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1 Introduction 
 
 
 

Mobatec Modeller 

"Rapid development of consistent dynamic process models"  

 

Mobatec Modeller is designed to effectively assist a model designer in building 

and maintaining consistent models. Using Mobatec Modeller significantly 

reduces the modelling time and overall effort. 

Mobatec Modeller is a software instrument following a systematic modelling 

method (developed by prof. dr. dipl-ingH.A. Preisig and dr. ir. M.R. Westerweele) 

for the design of first principles (i.e. physical insight) based dynamic process 

models for physical, chemical and biological processes. 

 
 
 

Models take a central position in all process engineering tasks as they replace the process for the 

analysis. They represent an abstraction of the process, though not a complete reproduction. Models 

make it possible to study the behaviour of a process within the domain of common characteristics of 

the model and the modelled process without affecting the original process. The mapping of the 

process into a model does not only depend on the chosen theory, but also on the conditions under 

which the process is being viewed. The mapped characteristics vary thus not only with the applied 

theory but also with the conditions. 

 

The construction of process models (including testing, initialisation, tuning, etc) is, in general, seen 

as a difficult and very time consuming task and is preferably handed over to "modelling experts". 

This does not have to be the case if a clear, stepwise method is adhered to. 

Establishing a model, as it is used in a particular application, involves a number of operations, which 

can be broken down into a number of principle steps. This documentation will shortly introduce a 

systematic modelling methodology, which is based on the hierarchical decomposition of processes 

into thermodynamic systems. After that, the implementation of this methodology in the computer 

tool Mobatec Modeller will be discussed.  
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For a thorough discussion on the "new" concepts that are introduced in this document (such as 

Physical Topology, Species Topology and Equation Topology) and other important concepts (such as 

fundamental time scale assumptions in process models) that play a crucial role, when modelling a 

physical/chemical/biological process, we refer to the doctoral thesis of dr. ir. M. R. Westerweele. 

This thesis - "Five Steps for Building Consistent Dynamic Process Models" - can be downloaded from 

our website http://www.mobatec.nl. 

 

1.1 The Modelling Process 

 
A chemical engineer is often asked to describe the dynamic and/or static behaviour of a physical-

chemical-biological (PCB) process (or a set of these processes, which constitute a plant), because 

information about this behaviour is needed for operations like analysis, control, design, simulation, 

optimisation or process operation. In order to analyse the behaviour of such a process, the engineer 

often needs a mathematical representation of the physical and chemical and/or biological 

phenomena taking place in it. 

 

The representation of a PCB process in form of a mathematical model is the key to many chemical 

engineering problems. Modelling a chemical process requires the use of all the basic principles of 

chemical engineering science, such as thermodynamics, kinetics, transport phenomena, etc. It 

should therefore be approached with care and thoughtfulnes. 

 

A (mathematical) model of a process is usually a system of mathematical equations, whose solutions 

reflect certain quantitative aspects (dynamic or static behaviour) of the process to be modelled. The 

development of such a mathematical process model is initiated by mapping a process into a 

mathematical object. The main objective of a mathematical model is to describe some behavioural 

aspects of the process under investigation. 

 

The modelling activity should not be considered separately but as an integrated part of a problem 

solving activity. Heinz A. Preisig analysed and decomposed the overall task of problem solving into 

the following set of subtasks: 

 

• (Primary) Modelling. The first step in the process of obtaining a process model is the 

mapping of the ”real-world” into a mathematical object, called the primary model. In doing 

so, one may take different views and accordingly apply different theories, which naturally 

will result in different models. Within this first step, assumptions are made about the 
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principle nature of the process (such as time scales of hydraulics and reactions, fundamental 

states, etc.). 

 

• Model manipulation. The model can be simplified by applying mathematical manipulations, 

such as: 

o Model reduction 

o Linearisation 

o Transformation to alternative representations of the model 

o re-arrangement of the mathematical problem equations 

 

• Problem specification. Certain variables are instantiated (i.e. defined as known), such that 

they are available later during solution time and such that the number of equations equals 

the number of unknown variables. 

 

• Analysis of the mathematical model. The analysis of the mathematical problem is done 

in connection with the specification of the model. On the simple level, a degree of freedom 

analysis may be done, which for large scale systems is by no means trivial. On the higher 

level, one may look into things as index of the differential algebraic system. 

 

• Solution of the mathematical model. General purpose mathematical packages, such as 

differential algebraic equation solvers, large scale simulators, linear algebra packages, etc., 

are used to solve particular problems. 

 

• Analysis of the results. The analysis of the results must focus on a verification of the 

results by comparing them with known pieces of information. This may be experimental data 

or just experience. 

 

The outcome of the performance of each task must fulfil a set of specifications and requirements, 

otherwise the design is iterated by looping back to any previous task. This implies that modelling is 

a recursive and iterative process (and that includes not only the modelling, but everything that is 

associated with the use of the model). Rarely does one in the first attempt obtain a proper model for 

the problem under investigation. Usually, an adequate model is constructed progressively through a 

loop comprising a series of tasks of model development and model validation. 
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More often than not, the time spent on collecting the information necessary to properly define an 

adequate model is much greater than the time spent by a simulator program in finding a solution. 

Most publications and textbooks present the model equations without a description of how the model 

equations have been developed. Hence, to learn dynamic model development, novice modellers 

must study examples in textbooks, the work of more skilled modellers, or use trial and error. 

 

During the last decades there tends to be an increasing demand for models of higher complexity, 

which makes the model construction even more time consuming and error-prone. Moreover, there 

are many different ways to model a process (mostly depending on the application for which the 

model is to be used): different time scales, different levels of detail, different assumptions, different 

interpretations of (different parts of) the process, etc. Thus a vast number of different models can 

be generated for the same process. All this calls for a systematisation of the modelling process, 

comprising of an appropriate, well-structured modelling methodology for the efficient development 

of adequate, sound and consistent process models. Modelling tools building on such a systematic 

approach support teamwork, re-use of models, provide complete and consistent documentation and, 

not at least, improve process understanding and provide a foundation for the education of process 

technology. 

 

This document presents the concepts and design of Mobatec Modeller, a computer-aided modelling 

tool built on a structured modelling methodology, which aims to effectively assist in the 

development of process models and helps and directs a modeller through the different steps of this 

methodology. The objective of this tool is to provide a systematic model design method that meets 

all the mentioned requirements and turns the art of modelling into the science of model design. 

 

The focus of Mobatec Modeller is primarily on modelling and not on problem solving (although 

both activities are supported in the tool). Most of the currently available modelling languages and 

simulation packages focus on model manipulation, specification, analysis and/or solution and more 

or less leave out the modelling part. In general it is assumed that the mathematical model of the 

process under investigation is known or easy to assemble. The development of process models, 

however, is slow, error prone and consequently a costly operation in terms of time and money. 

Modelling is an acquired skill, and the average user finds it a difficult. A modeller may inadvertently 

incorporate modelling errors during the mathematical formulation of a physical phenomenon. 

Formulation errors, algebraic manipulation errors, writing and typographical errors are very common 

when a model is being implemented in a computing environment. Thus any procedure which would 

allow to do some of the needed modelling operations automatically would eliminate a lot of simple, 

low-level (and hard to detect) errors. 

 

Mobatec Modeller is a computer-aided modelling tool which is designed to assist a model designer 

to map a process into a mathematical model, using a systematic modelling methodology. The main 
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task solved by Mobatec Modeller is the construction and manipulation of the structure and 

definition of process models. The output of Mobatec Modeller is a first-principles based (i.e. based 

on physical insight) mathematical model, which is easily transformed to serve as an input to existing 

modelling languages and/or simulation packages, such as Mobatec LauTrane, Process Studio e-

Modeler, gProms, Aspen Custom Modeler, Modelica, Matlab, etc. For certain solvers (LauTrane and 

e-Modeler) a build in Run Time Simulation Environment is available, such that the build dynamic 

process models can be tuned and tested. 

 

1.2 Application Dependency of Models 

 
This work is concerned with the mathematical modelling of macroscopic physical and/or chemical 

processes as they appear in general in chemical or biological plants. A mathematical model of a 

process usually consists of a set of equations, which describe the dynamic and/or static behaviour of 

this process. 

 

There are many ways to generate these equations and there are many different ways to describe 

the same process, which will usually result in different models. The approach a modeller takes when 

constructing a model for a process depends on: 

 

• the application for which the model is to be used. Different models are used for different 

purposes. For example, a model which is used for the control of a process shall be different 

from a model which is used for the design or analysis of that same process; 

 

• the amount of accuracy that has to be employed. This is of course partially depending on the 

application of the model and on the time-scale in which the process has to be modelled. In 

general, a model which needs to describe a process on a small time-scale demands more 

details and accuracy then the model of the same process which describes the process over a 

larger time-scale; 

 

• the view and knowledge of the modeller on the process. Different people have different 

backgrounds and different knowledge and will therefore often approach the same problem in 

different ways, which can eventually lead to different models of the same process. 
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1.3 Structured Modeling Methodology 

 
The modelling of physcial-chemical-biological processes is one of the most important activities in 

process engineering, since it constitutes the starting point of most other engineering operations, 

such as simulation, design or control. Modelling is a creative activity, which requires the use of all 

the basic principles of chemical engineering science, such as thermodynamics, kinetics, transport 

phenomena, etc. It should therefore be approached with care and thoughtfulness. 

     

A (mathematical) model of a process is usually a system of mathematical equations, whose solutions 

reflect certain quantitatieve aspects (dynamic or static behaviour) of the process to be modelled. 

A modelling approach (or modelling methodology) can be defined as an algorithmic procedure 

intended to lead from specific knowledge of physical and topological nature of a process to a 

mathematical model of that process. The modelling methodology implemented in Mobatec 

Modeller is based on the hierarchical decomposition of processes (in which material and energy 

exchange are playing a predominant role during normal operation) into networks of elementary 

systems and physical connections. Elementary systems are regarded as thermodynamic simple 

systems and represent (lumped) capacities able to store extensive quantities (such as component 

mass, energy and momentum). The connections have no capacity and represent the transfer of 

extensive quantities between these systems. The construction of a process model with this 

methodology consists of the following steps: 

 

1) Break the process down into elementary systems that exchange extensive quantities through 

physical connections. The resulting network represents the physical topology. 

The process of breaking the plant down to basic systems and connections determines largely 

the level of detail included in the model. It is consequently also one of the main factors for 

determining the accuracy of the description the model provides. 

 

2) Describe the distribution of all involved chemical and/or biological species as well as all 

reactions in the various parts of the process. This represents the species topology. 

This species topology is superimposed on the physical topology and defines which species 

and what reactions are present in each part of the physical topology. 

 

3) For each elementary system and each fundamental extensive quantity (component mass and 

energy) that characterises the system write the corresponding balance equation. 

Mobatec Modeller automatically generates all the needed balance equations for component 

mass and enthalpy of each system, since these balances can trivially formed from the model 

designers definition of the physical and species topology of the process. The user cannot edit 

the generated balance equations! 
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4) Add algebraic equations to the model definition: 

• Choose the transfer laws and kinetic laws that express the flow and production rates of 

the balance equations. 

• Express the fundamental extensive variables that characterise each system as a function 

of intensive variables characterizing the same system. 

• Look for dependencies between the intensive and geometric variables that have been 

introduced and write these dependencies out as equations of state. 

 

The dynamic balance equations (step 3) and the algebraic equations, which are placed on 

top of the physical topology and species topology, respresent the equation topology. 

A detailed discussion on the problems (and their solutions) that can arise when introducing 

the algebraic equations is given in thesis of Dr. Ir. M.R. Westerweele, which can be 

downloaded from our website http://www.mobatec.nl. 

 

5) Add the (dynamic) behaviour of the information processing units, such as transmitters, 

adjusters and controllers. 

 

These steps for building a model do not have to be done strictly in this sequence - at least not for 

the overall model. It is left to the model designer when the details are being specified in each part of 

the model.  

 

This five step procedure of building dynamic process models always results in a set of differential 

algebraic equations (DAE) with an index of one. The model can be used for solving certain problems 

related to the process or it can be further modified by applying mathematical manipulations, such as 

linearisation or model reduction. 

 

1.4 Implementation of Mobatec Modeller 

 
Solving process engineering without the help of computer-based tools is for almost any problem an 

unthinkable proposition. Process simulation, process design, controller design, controller testing, 

data acquisition and model identification, paramete fitting, valve and pump selection, column sizing 

are just a few examples taken from a very large catalogue of chemical plant related operations that 

are almost exclusively done with computer-based tools. Considering the fact that multiple solutions 

to individual problems are available from different sources such as software houses or supplier 

companies, the catalogue of tools is rather large. A process engineer, who is more and more 
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involved in the integrated design of processing plants, is thus faced with a multitude of different 

software tools, which he uses more or less frequently depending on his allocation. Since each of 

these packages has been developed in isolation, each has a different interface and applies to 

different problems though the tools may be used to solve problems associated with the same plant. 

Often the software is very complex and needs a specialist to define and run problems. Data transfer 

between tools is not standardised and requires special arrangements or add-ons. All features which 

do not enhance team work and productivity. 

The key to improving effciency is an increased use of common process information and effective 

exchange of data, models and information between the applications. 

 

Mobatec Modeller is a computer tool that is based on the ideas and concepts which were briefly 

described in the previous paragraph. It  is a computer-aided modelling tool to interactively define 

and modify process models. It aims to effectively assist in the development of these process models 

and facilitate hierarchical modelling of process plants through a user friendly interface. 

With Mobatec Modeller process models are constructed from primitive building blocks, being 

simple thermodynamic systems and connections. It does not, in distinction to existing flow sheeting 

packages, build on unit models. Mobatec Modeller generates symbolic models in the form of 

differential-algebraic equations consisting of component mass and energy balances, augmented with 

transfer laws, physical and geometrical property relations and kinetic laws. In this document the 

implementation of the modelling method in the computer-aided modelling tool the Mobatec 

Modeller is discussed. 

 

The next chapter starts with describing the construction and manipulation of physical topologies for 

processes with the aid of Mobatec Modeller. A special graphical user interface has been developed 

to handle physical topologies of arbitrary complexity. With the modelling tool, the physical topology 

of a process can be built using two main operations, namely refining an existing system (the top-

down approach) or grouping systems (the bottom-up approach). 

Chapter 3 discusses how one can construct and manipulate the species topology of a physical 

topology, using Mobatec Modeller. The definition of the species topology is initialised by assigning 

sets of species and reactions to some elementary systems. To aid in this definition, species and 

reaction databases are used. The user may also specify the directionality (i.e. uni or bi-directional) 

and permeability (i.e. selective transfer of species) of individual mass transfer connections. The 

distribution of the species over all systems is automated and uses the facts that assigned species 

can propagate through permeable mass connections and species may generate “new” species (via 

reactions), which in turn may propagate and initiate further reactions. 

Finally, the implementation and handling of variables and equations (equation topology), which 

constitute the generated models, is discussed. With the information on the physical and species 

topology Mobatec Modeller can automatically generate balances of fundamental extensive 

quantities (component mass and enthalpy) of every elementary system. In order to fully describe 
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the behaviour of the process, the flow rates and production rates involved in the balance equations 

need to be specified. So, in addition to the balance equations other relationships are needed to 

express thermodynamic equilibria, reaction rates, transport rates for heat, mass, momentum, and 

so on. A model designer can select a particular relationship from a set of alternatives and connect 

the selected relationship to a balance equation or to another defined relationship. In this way, each 

term in a balance equation can be expanded by defining it as a function of some quantities, which in 

turn may be expanded again and again. The resulting set of equations (the output of the modelling 

tool) forms a mathematical representation for the behaviour of the process in a specific form, which 

could serve as an input for problem solving tools, such as Mobatec LauTrane Solver (Mobatec), 

Aspen Custom Modeler (Aspen), gProms (Process Systems Enterprise), Matlab (Mathworks), Process 

Studio's e-Modeler (Protomation), Modelica (Dynasim AB) or any other DAE solver. 

 12



Construction of the Physical Topology 
 
 
 

 

2 Construction of the Physical Topology 
 
 
 
 

In order to get a mathematical description of a process, a modeller usually has to break the process 

down into smaller parts for convenience reasons. A process is thus assumed to consist of a set of 

subprocesses. These subprocesses may in turn be divided into smaller processes, and so on, until 

the process consists of a number of subprocesses, which each are small enough to be handled 

individually. In the modelling method that we employ this means that a process is divided into a 

network of interconnected volume elements. Each volume element of such a network consists of a 

single phase that is uniformly distributed and hence displays uniform properties over its volume. The 

network of volume elements describes, so-to-speak, the physical structure of the process and shall 

be referred to as the physical topology of that process. 

The physical topology contains, once established, the maximum of information about the dynamic 

phenomena captured in the model. Any modification on the topology changes the dynamic 

information contents. 

 

The construction and manipulation of the physical topology in an easy and fast manner, without 

compromising on the consistency of the process models, is one of the primary objectives of the 

computer-aided modelling tool Mobatec Modeller. The tool therefore allows for any structural 

change in any order. In this section the basic operations one can perform on a physical topology are 

discussed. 

 

2.1 Handling Complexity 

 
Elementary systems and connections are the primitive building blocks for constructing a 

mathematical model for a process. A (correctly defined) connection is always defined between two 

elementary systems. Thus, a network consisting of elementary systems and connections has a flat 

structure from a topological point of view. To aid in the handling of large and complex processes, the 

physical topology is organized in a strictly hierarchical multi-way tree. This means that the systems 

can be hierarchically grouped in composite systems, such that groups of components can be 

addressed. So, an additional tree structure is introduced, which is laid over the “flat” physical 

topology. 

 

 13



Construction of the Physical Topology 
 
 
The visualization of larger processes can still get rather complicated. The overall model of a large 

process could easily outgrow the screen and one could easily lose grasp of the whole process, 

especially if one would only show the flat topology. This implies that we have to find a 

representation of the tree that only shows one specific part of the tree with detail. The rest of the 

model should be shown with very little detail.  

 

 
Figure 2.1: Example of a “flat” physical topology 

 

 
Figure 2.2: Tree structure representation of a process, without showing the Connections 

 

A generic approach to this problem is to associate the view with the nodes of the tree. In this 

approach we limit the graphical display of a process to two successive hierarchical layers. One 

(composite or primitive) system is chosen as the “displayed” system, here called the focus system. 

This splits the overall model into two parts; the focus system and its environment. The focus 

system shows its subsystems (if it has any) in a frame. The environment systems of the focus 

system are displayed outside this frame. The following example illustrates what this means in terms 

of graphical representation: 
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Example 2.1: Visualization of a Process 

 

 
Figure 2.3: Graphical representation of the tree with system 1 as the focus system. The connections 

between the systems are not shown. 

 

Consider a process that can be hierarchically decomposed in a tree of systems as represented in 

figure 2.2. The complete process, which is modelled as a thermodynamic universe, is 

represented by the root node. The root node is composed of three subsystems, “1”, “2” and “3”. 

These three systems together also represent the complete process. So, if we chose system “1” 

as the focus system, we can graphically represent the whole thermodynamic universe c.q. as the 

complete process by showing only the three subsystems.  Figure 2.3 shows that graphical 

representation. The systems “1.1”, “1.2” and “1.3” build up the focus system “1” and are 

therefore located inside the window frame which constitutes the focus system. In order to 

represent the complete process, the systems “2” and “3” have to be shown as environment 

systems of system “1”. These systems are drawn outside the focus system window, because 

they are not part of the focus system. In this way the whole process is graphically represented 

by showing one system (the focus system) in detail, and the rest of the process (the 

environment systems of the focus system) with little detail. 

� 

 
The example shows that in this hierarchical representation of systems, information about the 

structure of the lower levels is hidden. 

 

2.2 Unique System Identifiers 

 

It is possible to give each system (either composite or primitive) a name, such that a model 

designer can keep an overview. To help the model designer with the handling of complex processes, 

a unique label c.q. identifier for each system is introduced. An example of these unique identifiers is 

already shown in the figures 2.2 and 2.3. The definition of a hierarchical tree of identifiers facilitates 
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a notation for the representation of an arbitrary hierarchical system. The described tree structure 

does not impose any limitations on the depth of the tree nor on the number of branches from each 

node. Every node is uniquely labelled by an identifier. 

Each identifier consists of a sequence of numbers, which are the branch numbers that must be 

chosen to arrive in the node being identified, starting at the root node of the tree. So, a node 

identifier uniquely describes the location of the node in the tree. In Mobatec Modeller, the root 

node of a process is always indicated with “Top Level”, because this node represents the 

“thermodynamic universe”. The first subsystem of the root is always identified by “1”, the second by 

“2”, etc. The first system of the third subsystem of the root will be labelled “3.1”. The first 

subsystem of the latter will have  “3.1.1” as identifier, etc., etc. The node identifiers are thus 

algebraically constructed by concatenating the consecutively chosen branch numbers. The “deeper 

down” a node is located in the tree, the “larger” its identifier will be (or the more numbers its 

identifier will comprise). Whenever the (tree structure of the) physical topology of a process is 

altered, Mobatec Modeller will update all identifiers of the systems that were influenced. In this 

way the identifiers of the systems (nodes) won’t loose their meaning and the systems identifier still 

describes the location of the system in the tree. 

 

Note: If you are not interested in showing the unique system identifiers, these can be hidden by 

checking the "Hide System Identifiers" checkbox on the [Preferences][Display] tab. 

 

2.3 Basic Tree Operations 

 

A physical topology is organized as a strictly hierarchical tree. This tree can be built using two main 

operations, namely by either refining an existing system (the top-down approach) or by grouping 

systems (the bottom-up approach). The operations that are used for the refining and grouping, and 

some other operations that are necessary for the manipulation of the physical topology will be 

discussed with the aid of simple examples. The examples will illustrate the influence of the 

operations on the tree structure and on the graphical representation of the tree. 

 

o Adding an Elementary System 

When constructing a physical topology for a process, one of the most important operations is of 

course the adding of new systems. A new elementary system is always inserted as an 

elementary system with a user defined name. The new system will be inserted as a subsystem 

of the focus system. As a rule a new system is always added to the right of the existing 

subsystems (if any) of the focus system. If the focus system does not have any subsystems yet, 

it is still a simple or primitive system. The insertion of a new system will turn the focus system 

into a composite system with one subsystem. 

Several types of systems can be inserted into the physical topology of a process. 
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Figure 2.4: Adding a new system 

o Selecting Systems 

For a number of operations, such as deleting, moving, grouping, dragging and copying, it is 

necessary to have the facility of selecting systems. When grouping or copying, only subsystems 

of the focus system (i.e. internal systems) can be selected for reasons of keeping the (tree) 

representation consistent. 

 

o Removing Selected Systems 

Any system, composite or elementary, can be removed from a tree. After the selected systems 

have been removed, the system identifiers will be automatically updated. Care should of course 

be taken when one removes one (or more) composite systems, because all the subsystems of 

that composite system will also be removed and the information of this part of the tree will be 

lost. 
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Figure 2.5: Removing systems. 

 

o Grouping Selected Systems 

As the number of subsystems in a system increases, the management of the subsystems is 

likely to become easier by grouping a set of those subsystems and introducing an intermediate 

system to represent them. This operation is called grouping.  

 

Figure 2.6: Grouping systems. 

The grouping operation can be defined by a series of previously discussed operations. First we 

select the subsystems of the focus system that we want to group. Then the selected systems are 

removed and a new system is inserted to the right of the remaining subsystems (if any). The 
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removed systems are finally reinserted, but now with the new system as their parent system. 

Grouping systems does not alter the (flat) physical topology of the process. It is merely a matter 

of convenience and management of the hierarchy. 

 

o Degrouping a System 

 

Figure 2.7: Degrouping a system. 

The degrouping operation is the inverse of the grouping operation. In this case an 

intermediate system, i.e. the system that is going to be degrouped, is removed after the 

subsystems of that intermediate system have become subsystems of the intermediate 

systems parent. Elementary systems can, of course, not be degrouped, because they do not 

have any subsystems. 

 

o Copying or Saving Selected Systems 

The selected systems can be copied. This operation makes an exact copy of the selected 

elementary and/or composite systems, and stores them in a buffer. For reasons of compatibility 

and consistency, only a set of systems that are subsystems of the focus system can be copied 

(or selected for copying). The saving of the selected systems is basically the same operation as 

the copying, with the difference that the systems are now stored on a disk, so that they can be 

used any time for the construction of any physical topology. 
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Figure 2.8: Copying/exporting systems 

 

o Pasting Copied or Imported Systems 

The pasting of copied or (from disk) imported systems is an operation that is very similar to the 

insertion of a new system. The paste operation adds the systems, which are stored in the buffer 

or on disk as subsystems of the focus system. Again the rule applies that “new” systems are 

always added to the right of the existing subsystems. 

 

 

Figure 2.9: Pasting/Importing Systems 

 

o Moving a System 

Sometimes it is necessary to move a system within the tree structure. The new parent of the system 

can be any system of the tree that is not a subsystem of the system that is moved. After each 

operation the identifiers of all the systems that were influenced by the operation, are updated. 
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Figure 2.10: Moving a system within the tree structure. 

 

2.4 Representation of Connections 

 

The used graphical representation of a hierarchical tree does not show every part of the model in 

detail. Most parts of the model are shown with very little detail, hiding the structure of their lower 

levels. Consequently, not every connection will be visible in this representation. Only connections 

which have an origin and/or target that is a subsystem of the focus system, will be displayed. 

Connections between two environment systems are not shown for reasons of surveyability. With this 

approach, we can distinguish between two “classes” of graphical connections, namely internal and 

external connections. An internal connection is a connection between two systems that are both 

subsystems of the focus system. An external connection has one system as origin or target which is 

not a subsystem of the focus system. Connections are defined between two elementary 

thermodynamic systems, but in our representation it is not always possible to show both of these 

systems at the same time. Therefore, it is necessary to introduce “(graphical) connections” between 

composite systems. What this means will become clear in the following sections. 

 

2.4.1 Making a New Connection 
 

A correctly defined connection is always defined between two elementary systems. If a model 

designer wishes to generate a new connection, he must first define the type of connection he wishes 

to generate. In other words, the modeller must define what kind of extensive quantity will be 

transferred through the new connection. For now the choices are limited to: a mass, heat or work 

connection (and information connections for the “transfer” of information). Then he must select a 

system that will serve as the origin of the connection and, subsequently, he must select a target 

system. 
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For ease of establishing a connection, Mobatec Modeller automatically invokes a zoom-in operation 

upon the selection of a composite system as either origin or target system. This means that the 

selected composite system will be set as focus system and the model designer can select a 

subsystem of this system. This is done because a connection always has to be defined between 

elementary systems. 

 

2.4.2 Graphical Representation of Connections 
 

The graphical representation of connections is best explained with the aid of a simple example. 

 

Example 2.2: Graphical Representation of Connections 

Consider a process for which the tree structure representation is defined as in figure 2.2. Let 

the following connections be given between the elementary systems (see figure 2.11a; se 

figure 2.1 for a flat topology of this example process): 

 
Connection 
number 

Origin 
System 

Target 
System 

1 1.1 1.3 
2 1.1 1.2.1 
3 1.2.1 1.2.2 
4 2 1.3 
5 1.2.2 3.1 
6 3.2 2 
7 1.3 3.2 

 
 

 
Figure 2.11: Graphical representation with system 1 as the focus system. 
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The following remarks can be made concerning these connections and their representation if 

system 1 is the focus system: 

o Connections “1” and “2” are both internal connections of system 1 (and are both 

external connections of system 1.1). Connection “1” is shown as a connection between 

two elementary systems. For connection “2” this is not possible, because the target of 

the connection (the elementary system 1.2.1) is not displayed on the screen. The 

connection is therefore displayed as a connection between the elementary system 1.1 

and composite system 1.2, for system 1.2.1 is a subsystem of system 1.2. 

o Connection “3” is an internal connection of the system 1.2 and is not displayed on the 

screen because both the origin and the target of this connection are subsystems of 

system 1.2. If one wants to show this connection on the screen, one must zoom in on 

system 1.2 (and set this system as the focus system). So, only internal connections of 

the focus system are shown on the screen. Internal connections of any other system are 

always hidden. 

o Connections “4”, “5” and “7” are external connections of the focus system 1, because 

these connections cross the boundary of system 1. 

o Connection “6” is not shown in this representation, for this connection is established 

between environment systems of the focus system 1. 

Figure 2.12 shows the graphical representation of the process with the tree root as the focus 

system. 

 
Figure 2.12: Graphical representation with the tree root as the focus system. 

 

Remarks: 

o As you can see, a problem arises here, for connection “5” and “7” are both defined 

between the (composite) systems 1 and 3. In the graphical representation it is displayed 

as only one connection “X”, while it in fact is a “composite connection" or "vector of 

connections", consisting of the connections “5” and “7”. In this way an arbitrary number 
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of connections between two (elementary or composite) systems can be defined and 

represented.  

o If every single connection would have to be displayed in the graphical representation, 

the screen could become very crowded and one would lose a certain amount of 

surveyability. Imagine, for example, the display of ten connections between a pair of 

systems. 

o If a user does want to see the individual connections, he has to either check the "Always 

Display as Single Connection” checkbox on the Physical Topology Tab of the connection 

properties or press the "Expand" button (keyboard shortcut "x") to expand the vector of 

connections into a set of single connections. 

o Information about the connections contained in a “composite” connection can be easily 

accessed with the modelling tool. 

o “Single” connections show the user-defined directionality of the connection graphically 

and composite connections do not (and can not). The directionality of the connections of 

a composite connection can be easily accessed with the modelling tool. Remember, 

however, that the origin and target of a connection only define a reference co-ordinate 

system for the actual flow (of extensive quantities). The actual direction of the flow 

depends on a difference in potential between the systems. 

o All defined systems are subsystems of the tree root and consequently there are no 

external systems and no external connections. 

� 

 

2.5 Consequences of Manipulations on the Physical Topology 

 

Manipulation of the physical topology can give rise to two kinds of problems with the already defined 

connections. The first arises when one wishes to refine an elementary system, which is connected to 

other systems. The second problem occurs when one deletes, copies or saves a (composite or 

elementary) system which has one or more external connections. Both of these actions will cause 

the involved connection to be, at least temporary, not properly defined or “undefined”. The two 

problems give rise to two different kinds of “undefined” connections, namely “loose connections” and 

“open connections”. The following will discuss how these two types are handled in the modelling 

tool. 

2.5.1 Loose Connections 
 

Loose connections show up when one wants to refine an elementary system that has connections. 

This means that one “zooms in” on an elementary system, which is already connected to other 

systems, in order to add subsystems to this system and thus change it into a composite system. As 

soon as one or more subsystems are inserted to an elementary system with connections, all these 

 24



Construction of the Physical Topology 
 
 
connections will loose their meaning/relevance because they are now no longer defined between two 

elementary systems. 

A solution to this problem is to introduce (temporary) loose connections. A loose connection is 

defined as a connection of which one or two ends are connected to a composite system. A loose 

connection thus has no physical meaning; it is just a temporary state of a connection to help the 

model designer in fast and easy modelling. The “loose ends” of a loose connection have to be 

reconnected to a subsystem of the system the connection was originally connected to, in order to 

form a properly defined connection again. 

 

Example 2.3: Loose Connections 

 

Figure 2.13: Appearance of loose connections, when zooming in on a connected elementary system. 

 

Consider a system (system 1 in figure 2.13) which is connected to two other systems 

(systems 1.2.1.1 and 1.2.2). If we now zoom in on system 1.1 (as shown in figure 2.13), 

the connections that are connected to the system 1.1.are shown as loose connections, but 

they are, in fact, still correctly defined connections, because system1.1 is still an elementary 

system. If we would add a new system to system 1.1, the connections would loose their 

meaning, because system 1.1 would then turn into a composite system and connections 

must always be defined between two elementary systems. The “1.1” in the temporary 

endpoints of the loose connections denote that the loose connections have to be reconnected 

to a subsystem of system 1.1. The reconnection of the loose connections (if necessary) can 

be done at any point during the model definition. 

� 
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2.5.2 Open Connections 
 

An open connection is defined as a connection that is only connected to one system. The other 

system of the connection (either the target or the origin) is not yet defined. Connections that are not 

connected to any system are no connections and therefore do not exist. So, if the result of a 

manipulation on the physical topology is an open connection with no connected systems, then this 

connection is deleted. 

Just like a loose connection, an open connection has no physical meaning and is just a temporary 

state to help the model designer. Open connections can appear by one of the following actions: 

o Deleting a system that is connected to systems that are not deleted. 

o Copying or exporting a set of systems that are connected to systems that are not being copied 

or exported. The copied systems will contain connections that are open because these 

connections are only connected at one side. 

o Deliberately making a new connection that is only connected to one system (either the origin or 

the target of the connection). This can be of help, for example, in the construction of not 

finished, but reusable model parts, such as heat exchangers. In the overall model, a shell and 

tube heat exchanger must be connected to a source and sink for both the contents of the shell 

and tube. The heat exchanger as a stand-alone model is not (yet) connected. If a model 

designer imports the model of the heat exchanger into another model, he will not forget to 

properly connect the heat exchanger to the existing model, because the open connections of the 

heat exchanger have to be reconnected. 

 

Open connections may be reconnected at any time to an elementary system of the physical 

topology. They can, of course, also be deleted. 

A special feature of Mobatec Modeller that only applies to open connections is that they can be 

hidden in order to increase the surveyability when the model designer is not focussing on the open 

connections. 

 

Example 2.4: Open Connections 

Figure 2.14 shows that by deleting system 1.1 three open connections will form. Standard, 

only those open connections are shown for which the connected endpoint is visible on the 

screen. In this example this means that only connections 2 and 3 are visible and connection 

1 is hidden, because system 1.1.1.1 is not visible on the screen. It is possible, though, to 

show all the open connections on the screen.  
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Figure 2.14: Appearance of open connections, when deleting a connected elementary system. 

 

In contrast to loose connections, the temporary endpoints of the open connections do not 

contain a number. This means that an open connection can be reconnected to any 

elementary system of the physical topology. 

� 

 

2.5.3 Possible States of Connections 
 

As mentioned, connections can have different (temporary) states to help the model designer with 

the construction of process models. The final model can, of course, not contain any “undefined” 

connections, so these have to be dealt with before the model designer generates the end result. 

Figure 2.15 summarizes the possible temporary states of connections, during the model construction 

phase: 
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Figure 2.15: Possible states of connections. 

 

Remarks: 

o The loose end of connection C2 (i.e. system 2) can only be reconnected to (elementary) 

subsystems of this composite end (i.e. system 2.1 or 2.2). The same accounts for the loose 

ends of connections C3 and C5 

o The open ends of connections C4 and C5 can be reconnected to any elementary system 

(except the (elementary) system it is already connected to (system 2.2 in case of 

reconnecting connection C4)). 

 

2.6 Repetitive Structures 

 

An additional advantage of the temporary states of the connections is that these can be used for the 

definition of so-called repetitive structures. These repetitive structures can be used to approximate 

the behaviour of distributed systems or to build large, interconnected physical topologies in a very 

quick manner. The implementation of repetitive structures in Mobatec Modeller is limited (for now) 

to one-dimensional repetitions. Expansion to two and three-dimensional repetitions should, in 

principle, be trivial. 

The following example illustrates the implementation of repetitive structures. In principle, the 

repeated structure can be a tree of any size and depth with any kind of interconnection, but to keep 

things simple we use a “flat topology” as repetitive structure. 

 

Example 2.5: Repetitive Structures 
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Figure 2.16: Repeating a repetitive structure. a-b) repetitive structure. c-d) repeated repetitive 

structure. 

 

Consider the physical topology shown in figures 2.16a and 2.16b. The physical topology 

consists of 6 systems (1, 2.1, 2.2, 2.3, 3 and 4), 4 mass connections, 2 heat connections 

and 1 work connection. The system 2 is the one that is to be “repeated” (three times, in this 

example). In this example, the heat connections are used for the interconnection of the 

repeated structures. The “repetitive system” of heat connection 1 is system 2.1, which 

means that the connection will be connected to the system 2.1 of the next copy when the 

structure is repeated. The repetitive system of heat connection 2 is system 2.3. The 

(encircled) work connection is set to be “connected to all repeated structures”. Mass 

connections 2 and 3 are internal to the structure and will be copied and be internal to each 

copy of the repeated structure. Mass connection 1 has its target in the repeated structure 

and will only be connected to the first of the repeated structures. Mass connection 2 has its 

origin in the structure that is to be repeated and will only be connected to the last copy, 

when the structure is repeated. Figure 2.16c shows the result when system 2 is repeated 

three times. Figure 2.16d shows the result of the repetition when the composite systems (2, 

5, 6 and 7) shown in figure 2.16c are degrouped. 

� 
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The repetitive structure building function can seriously speed up the construction of larger models, 

because, when the repetitive structure is properly initialized, the resulting structure will also be 

properly initialized. 
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3 Construction of the Species Topology 
 
 
 
 

The definition of the species topology of a process is initialized by assigning sets of species (and/or 

reactions) to some systems. Species (i.e. chemical and/or biological components), as well as 

reactions should be selected from corresponding databases. So, before the species topology can be 

defined, a species and a compatible reactions database must be defined. Such a database contains a 

list of species and a list of possible reactions between those species. A species and reactions 

database should, of course, be editable by the user in order to satisfy the specific needs of the user. 

 

In the following, the complete process the model designer wishes to develop is referred to as the 

plant. 

 

3.1 Defining Plant Species and Reactions 

 

Processing plants involve different types of processes, such as mineral, petrochemical, 

pharmaceutical, polymeric, or biological with various species and reactions. The definition of the 

species in various parts of a processing plant requires data about these species. This data can be 

found in species and reactions databases. In general, a processing plant does not involve all the 

species and reactions that are listed in a database. Therefore, a model designer has to select a 

subset from this list, which comprises all the species and reactions that appear in the (model of the) 

plant and which thus serves as the ”database” for that particular plant. This plant database is then a 

collection of all species and reactions that may exist in the plant. The selected subset of species will 

be called the plant species. The selected reactions will be called the plant reactions. These subsets 

have to be formed to improve the surveyability and to prevent unnecessary computations involving 

species and reactions that are not present in the plant. 

 

For the construction of the species topology, the species name and its formula are sufficient, but the 

database can and must, of course, contain other information, such as specific physical properties. 

Similarly for reactions, only information about which reactants and which products are involved in a 

reaction, is sufficient for the construction of the species topology. However, stoichiometric 

coefficients and other reaction data are most likely to be connected with the database. 
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With Mobatec Modeller, species and reactions can be selected from one or more user specified 

databases to form the plant species and reaction sets. To aid a model designer in defining a plant 

species and reaction set for his process, the following actions can be performed: 

o Adding species to the plant species set. The user specified species will be copied from the 

database and added to the plant species set. 

o Adding reactions to the plant reaction set. Whenever a new reaction is added to the plant 

reactions set, the plant species set will automatically be extended with all involved 

species(i.e. the reactants and products of the reaction), which were not yet listed in this set. 

o Removing reactions from the plant reaction set. The user-specified reactions will be removed 

from the plant reaction set and will consequently also be removed from all the systems in 

which they were injected. 

o Removing species form the plant species set. Whenever a species is removed from the plant 

species set, all reactions of the plant reactions set, which contain this species (either as a 

reactant or a product), will be removed from the plant reactions. The species and reactions 

that were removed from the plant sets will, of course, also be removed from all the systems 

they were used in. 

 

3.2 Making New Species and Reactions 

 

Databases holding information about species and reactions can be expanded by a user by 

introducing new species and/or reactions. In order to add a new species to a database, a user must 

only give a name and specify a formula (which is used in the notation of reactions and for the 

translation of variables in the generated output code).  Optionally, an identifier can be given, which 

can be used by external physical property databases. 

Species specific parameters can be assigned to species by selecting the appropriate (vector) variable 

from the list of available variables and adding it to the species parameter list. A value for the new 

parameter can be given. 

 

When introducing a new reaction, the reactants and products with their stoichiometric coefficients 

need to be defined. The handling of reaction equations is not discussed in this generic document.  

 

3.3 Injecting Species and Reactions 

 

The definition of the species topology is initialized by ”injecting” species and/or reactions into 

elementary systems. This means that the model designer has to assign a set of species and/or 

reactions to some elementary systems. These species can only be selected form the defined plant 
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species and reactions, since these sets represent all species and reactions that may exist within the 

plant. 

 

After the assignment of the injected species and injected reactions to a specific system, the 

modelling tool will (re)calculate (parts of) the species distribution. This means that the species will 

propagate into other systems through mass connections. Within the systems, the species may 

undergo reactions and generate ”new” species, which in turn may propagate further and initiate 

further reactions. This eventually results in a specific species distribution over the elementary 

systems, which is referred to as the species topology of the processing plant.  

 

The foregoing made clear that the species that are actually associated with a system can have either 

one of the following sources: 

o Initialized species: injected to a system by a model designer 

o Transferred species: arrived through one of the mass connections 

o Product species: result of a reaction. 

 

The reactions that are associated with a system can only be the result of a manual injection by a 

model designer. 

 
Figure 3.1: Injecting of species and/or reactions at composite systems. 

 

Species and reactions may also be injected at composite systems. The injected species and/or 

reactions will then actually be injected in all the elementary systems that are subsystems of the 

composite system (see figure 3.1). The same accounts for the removal of injected species or 

reactions: If a species or reaction is to be removed from a composite system, then this species or 

reaction will actually be removed from the injected species or injected reactions sets (only if the 

specific species or reaction is listed, of course) of all the elementary systems that are subsystems of 

the composite system (see figure 3.2). 
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Figure 9.2: Removing of injected species and/or reactions from a composite system. 

 

The injection of a reaction into an elementary system does not automatically imply that this reaction 

can ”happen” in this system and thus that the products of this reaction can be formed. If not all 

reactants of a reaction are available in a system, then this reaction cannot take place in this system. 

In such a case, the system will have an injected reaction but this reaction will not be active (it is 

deactivated). So, the reaction will not take place in the system in this case. When the species 

distribution is changed and the reaction can take place again, it will automatically be ”re-activated”. 

It should be noted that the presence of an ”activated” reaction in a system does not imply that this 

reaction has to happen in this system. It implies that this reaction may happen in this system, 

depending on the operating conditions in the system and the driving force for this reaction. 

 

3.4 Permeability and Uni-Directionality of Mass Connections 

 

In the physical topology of a plant, mass connections establish the communication paths between 

pairs of systems, without specifying which species may or may not be transferred. As mentioned, 

permeability and uni-directionality are introduced as properties of mass connections. They constrain 

the mass exchange between systems by making the species transfer respectively selective or uni-

directional. 

 

The permeability of a mass connection can be defined in two complementary forms: 

o Permeable Species Set: This set includes all species that may pass through the mass 

connection. All other species of the plant species set can not be transferred via this mass 

connection. 

o Non-Permeable Species Set: This set is formed by selecting all species that are not 

transferable through the mass connection. 

 

Both complementary approaches are enabled with Mobatec Modeller since not having one or the 

other approach may force a model designer to (repetitively) define large sets of species. 
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Often, most connections in a model of a process represent convective flows, which by definition 

communicate all species. Therefore, the default permeability of a mass connection is defined by an 

empty non-permeable species set and thus as permeable for all species. 

 

Which species are actually transferred through a connection depends on the species sets of the two 

connected systems. In reality, it also depends on the actual transfer direction, which depends on the 

states of the two connected systems. Since the latter information is not available during the 

construction of the physical and species topology, mass connections are assumed to transfer 

potentially in both directions (by default). Species may therefore exist on both sides of a connection, 

that is, if a species appears on one side of a connection and it is not inhibited by a defined 

permeability, it may also appear on the other side. This policy is very suitable for safety and hazard 

studies, as the resulting species topology is a maximum solution, showing where the different 

species may occur (and showing which reactions are potentially possible) in different parts of the 

process’ model. This approach, though, will generate more equations than necessary for the 

description of common processes. That is why the concept of uni-directional mass transfer is 

introduced. This can reduce the number of equations, because species are only allowed to propagate 

in one direction when the species distribution is (re)calculated and this can reduce the number of 

species in an involved system. The resulting species topology, based on this policy, could reflect 

more closely the actual situation in the process. 

 

3.5 Propagation of Species 

 

Whenever an operation is executed which modifies the current species distribution, a mechanism is 

activated which updates the species distribution over all elementary systems and connections of the 

affected mass domains. This mechanism first clears all the information about the current species 

distribution of the affected mass domain. Then all user-defined injected species and reactions are 

injected in their respective elementary systems. After this, all injected species as well as all products 

from injected (and activated) reactions are propagated in the mass domains. 

 

3.6 Consequences of Manipulations 

 

The application of some modification to the physical structure of a model, such as deletion of a 

system or the removal of a (mass) connection, will invalidate (parts of) the constructed species 

topology. The species distributions of all affected mass domains and the mass domains themselves 

are therefore reconstructed by Mobatec Modeller after any significant change of the physical 

topology. 
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Also, modifications to the species topology itself will influence the species distribution. For example, 

the removal of an injected species, the “removing” of a reaction or the changing of the permeability 

of a connection will have an effect on (parts of) the species topology. Every action that affects the 

species distribution of a particular mass domain will invoke an update mechanism which will 

recalculate the species distribution of that domain. 
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4 Construction of the Equation Topology 

 

 

Having completed the first two stages of the modelling process, Mobatec Modeller can automatically 

generate the dynamic part of the process model, namely the (component) mass and energy 

balances for all the elementary systems, using the conservation principles. The resulting 

(differential) equations consist of flow rates and production rates, which are not further specified at 

this point. In order to fully describe the behaviour of the process, all the necessary remaining 

information (i.e. the mechanistic details) has to be added to the symbolic model of the process. So, 

in addition to the balance equations, other relationships (i.e. algebraic equations) are needed to 

express transport rates for mass, heat and momentum, reaction rates, thermodynamic equilibrium, 

and so on. The resulting set of differential and algebraic equations (DAEs) is called the equation 

topology. 

 

From a certain point of view the modelling process can thus be regarded as a succession of 

equation-picking and equation-manipulation operations. The modeller has, virtually at least, a 

knowledge base containing parameterized equations that may be chosen at certain stages in the 

modelling process, appropriately actualized and included in the model. The knowledge base is, in 

most cases, simply the physical knowledge of the modeller, or might be a reflection of some of his 

beliefs about the behaviour of the physical process.  

 

The equation topology forms a very important part of the modelling process, for with the information 

of this topology the complete model of the process is generated. The objective of the equation 

topology is the generation of a mathematically consistent representation of the process under the 

view of the model designer (who mainly judges the relative dynamics of the various parts, thus fixes 

intrinsically the dynamic window to which the model applies). In order to efficiently produce dynamic 

process models, Mobatec Modeller must, of course, appropriately deal with variables and equations. 

 

In this chapter a classification of the variables and equations that are occurring when modelling 

physical/chemical systems is made. Next, the balance equations are discussed. After that, the 

algebraic equations, that are necessary to complete the mathematical model of the process, are 

classified. The proposed classification makes modelling into an almost trivial activity. 
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4.1 Variable Classification 

 

The conservation of extensive quantities forms the foundation for describing the dynamic behaviour 

of systems. Therefore, the set of conserved quantities are called fundamental extensive quantities or 

the primary state. In the thesis of dr. ir. M.R. Westerweele it is shown that the dynamic part (i.e. 

the differential equations) of physical-chemical-biological processes can be represented in a concise, 

abstract canonical form, which can be isolated from the static part (i.e. the algebraic equations). 

This canonical form, which is the smallest representation possible, incorporates very visibly the 

structure of the process model as it was defined by the person who modelled the process: The 

system decomposition (physical topology) and the species distribution (species topology) are very 

visible in the model definition. The transport (z) and production (r) rates always appear linearly in 

the balance equations, when presented in this form: 

 BrAzx
dt
d

+=  

in which 

x :: Fundamental state vector 

z :: Flow of extensive quantities 

r :: Kinetics of extensive quantity conversion 

A:: Interconnection matrix 

B:: Stoichiometric coefficient matrix 

 

The classification of variables that is presented here is, in the first place, based on the structural 

elements of the modelling approach (namely systems and connections). The sub classification has 

its origins in thermodynamics. The variables that appear in the mathematical model of a process are 

divided into three main groups, namely system variables, connection variables and reaction 

variables. 

 

4.1.1 System Variables 

 
System variables are variables that are defined within the boundary of a system (or sometimes a 

group of systems). They can be subdivided into two main groups: 

 

• The basic type of variables are the fundamental extensive variables or fundamental state 

variables (x) representing the quantities for which conservation laws are valid and for which 

we write balance equations. In most chemical processes, these are component masses (total 

mass is the sum of the component masses), energy, and momentum. 
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• The second group of variables is called application variables or secondary state variables (y), 

which is a gathering of two categories, intensive and geometrical variables, as well as other 

variables not covered by the previous classification. The secondary state variables are 

quantities that are derived from the primary state (x). The secondary state must be the 

result of a mapping of the primary state (y=f (x)). Thus in any model, this link must exist. 

 

Intensive variables are those that provide a local characterization of the process. We distinguish 

among them potentials that are driving forces for flows such as temperature, pressure, chemical 

potential, and physical properties characterizing the “quality” of the material such as density, or 

concentration. 

Geometrical variables are those that characterize the dimension configuration of the process, 

independent of the presence of the physical process. They may describe the extent of the process 

such as volume, area, etc. or give localized characteristics such as porosity, tortuosity, etc. 

The choice of the intensive and geometric variables that characterize the process is very much 

application dependent in the sense that it is determined by the final goal of the model. A common 

property of the intensive and geometric variables is that, in general, these are the variables for 

which direct information through measurements is available. 

 

4.1.2 Connection Variables 

 
Connection variables are associated with physical connections and can be divided into two groups: 

 

• Flow rates of fundamental extensive quantities represent the rates by which the respective 

quantities are exchanged between two interconnected elementary systems. An important 

aspect that we retain for our analysis is that some transfers may induce flows of several 

fundamental extensive quantities. For example, a mass transfer will induce flows of 

component masses for each substance present in the transferred material, but also flows of 

momentum and energy. Similarly, a momentum transfer induces also an energy transfer in 

the form of mechanical work. In general, each physical connection has assigned a unique 

fundamental flow and, possibly, several (or no) induced flows. 

We distinguish in our model between fundamental or primary flow variables (z) and 

secondary flow variables. The primary flow variables are the variables that appear directly in 

the balance equations. Secondary flow variables are related to the primary flow variables via 

an algebraic expression and do not appear in the balance equations (when, of course, no 

substitutions have been made). For example, the mass flow rate (primary flow variable) of a 

mass stream of incompressible fluid can be easily expressed as a function of the 

corresponding volumetric flow (secondary flow variable). The flow rates are usually defined 
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as a function of the secondary state variables of the two interconnected systems (z=h(yor, 

ytar)).  

 

• Application variables are a gathering of physical properties, geometrical variables and other 

variables that are related to the connection (i.e. the common boundary of the two 

interconnected systems).  

 

4.1.3 Reaction Variables 

 
The last group, the reaction variables, will also be split up into two subgroups: 

 

• Production rates (r) of fundamental extensive quantities represent the rates by which the 

respective quantities are produced inside an elementary system. The typical examples are 

the chemical reaction kinetic rates. These variables are associated with those phenomena in 

which transformations of fundamental extensive quantities occur inside an elementary 

system. Such is the case for chemical reactions in which component masses are being 

transformed into one another. As in the case of flow rates, we can speak of fundamental 

production rates and induced production rates. In the case of chemical reactions, it is 

common practice to use the extent rate of a reaction to describe the evolution of the 

reaction. The consumption rates of reactants and the production rates of the reaction 

products are expressed in terms of the extent rate of the reaction and thus become induced 

production rates. The production rates are usually defined as a function the secondary state 

variables of a system (r=g(y)). 

 

• Application variables are a gathering of variables that are related to the reaction (for 

example, the pre-exponential kinetic constant or the activation energy of a reaction). 

 

4.2 Fundamental State Variables and Equations 

 
The behaviour of a system is characterized by the evolution of its state with time. The choice of the 

elementary system is driven by the choice of the timescale in which the dynamics of the system is to 

be resolved. This choice is fundamental to the analysis. 

In order to characterize the behaviour of a system, information is needed about the natural state of 

this system (at a given time) and about the change of this state with time. The natural state of a 

system can be described by the values of a set of fundamental extensive quantities, while the 

change of state is given by the balance equations of those fundamental variables. The fundamental 

extensive variables represent the ”extent” of the system c.q. the quantities being conserved in the 

 40



Construction of the Equation Topology 
 
 
system. In other words: they represent quantities for which the conservation principle and 

consequently also the superposition principle applies. So, for these variables, the balance equations 

are valid. In most chemical processes, the fundamental variables are: component mass, total energy 

and momentum. But other extensive quantities (charge, for example) might be necessary 

sometimes and will obviously have to be present in a generic modelling tool. 

 

The dynamic behaviour of a system can be modelled by applying the conservation principles to the 

fundamental extensive quantities of the system. The principle of conservation of any extensive 

quantity x of a system S states that what gets transferred into the system must either leave again 

or is transformed into another extensive quantity or must accumulate in the system (In other 

words: no extensive quantity is lost). Symbolically we can write a balance equation for the 

fundamental extensive variable  that characterizes the elementary system S as: fx

 ∑∑ +=
p

p
c

cc
f
S xxx

dt
d ~ˆα  

Where the first sum is taken over all the physical connections c which contribute to the exchange of 

 and the second sum is taken over all production/consumption processes p. Further,  

represents the corresponding flow rate of extensive quantity x through connection c and 

f
Sx cx̂

px~  

corresponds to the production rate (which is assumed to be of negative sign if it corresponds to a 

consumption process). 

The direction of the flow through a connection is defined relative to the reference co-ordinate 

system, which, in essence, is introduced for the consistency of the models. This means that a flow is 

positive if it moves in the reference direction and negative when it moves in the opposite direction. 

Adding the predicate of direction to every flow allows for dynamic changes of the directionality 

without affecting the structure of the involved equations. Further, the transfer is defined only once 

and is then incorporated in the two sets of balance equations describing the behaviour of the two 

connected systems. The coefficients cα  {−1, 1} indicate the conventional direction of the flow rate 

. cx̂

 

4.3 Balance Equations 

 

Mobatec Modeller currently supports only component mass and energy (i.e. enthalpy) balanced 

variables. Extensions to other extensive quantities (such as momentum or charge) will be available 

in the future. However, a very wide range of physical, chemical and/or biological processes can be 

modelled with only component mass and enthalpy as balanced quantities. 
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4.3.1 Mass Balances 

 
Mass is one of the prime extensive quantities when modelling physical-chemical processes. The 

generic balance equation applies to any of the species present in the system, whereby the number 

of independent balances is equal to the number of species, that is, if no constraining assumptions 

are being made. The total mass balance is always the sum of the component balances, thus it is 

linearly dependent on the component masses.  

 

In most applications it is convenient to use the component mass balances as the basic set of 

equations. The accumulation of the component masses in a system (S) is balanced by the transfer 

across the system boundary and the internal conversion through reactions: 

 ∑
∀

+=
c

SccS nnn
dt
d ~ˆα  

where 

Sn :: Vector of species, in moles 

in̂ :: Vector of molar mass flows of mass connection i 

iα :: Unit direction of reference co-ordinate ∈ {−1, 1} 

Sn~ :: Vector of production rates for all species 

 

This equation represents the component mass balances of any dynamic system, which is defined in 

a model of a physical-chemical process.  

 

The mass connections describe the exchange of mass across the boundary separating two adjacent 

systems. The direction of the flow through a connection is defined relative to the reference co-

ordinate system, which, in essence, is introduced for the consistency of the models. This means that 

a flow is positive if it moves in the reference direction and negative when it moves in the opposite 

direction. Adding the predicate of direction to every flow allows for dynamic changes of the 

directionality without affecting the structure of the involved equations. Further, the transfer is 

defined only once and is then incorporated in the two sets of balance equations describing the 

behaviour of the two connected systems. 

 

The production term , which appears in the component mass balance for a particular species An~ j of 

an elementary system S, includes the information about the rate of consumption or production of 

this species. This production term is therefore defined as the sum of the rate expressions of each 

elementary reaction, which involves the species Aj. Kinetic rate equations or “reaction laws” are 
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empirical relations, which describe the rate of conversion of one species (Aj) in an elementary 

reaction as a function of the concentration of all the species in the system. The empirical relations 

are very often power laws, with the exponents reflecting the number of molecules of that particular 

species involved in the reaction. 

 

Chemical reactions are defined as stoichiometric equations that relate a number of reactant 

molecules with a number of product molecules: 

 nnnn AAAA ||||............|||| 112211 νννν ++↔++ −−  

With 

iν :: Stoichiometric coefficient (>0 for products, <0 for reactants) 

iA :: ith species 

 

The coefficients iν  in this “equation” are called the stoichiometric coefficients. In order to use the 

reaction concept in mathematical modelling, the “reaction equation” is slightly generalized, such that 

the chemical reaction can be represented in a form that is almost like an equation. That is, for every 

reaction a generalized stoichiometric equation is defined: 

  ∑
=

n

i
ii A

0
ν

or, in matrix notation: 

 0=ATν  

With, 

ν :: Stoichiometric coefficient vector = ( 1ν 2ν ...... nν )T for n species 

A :: Species vector, containing all ‘reactive’ species of the system under consideration 

= (A1 A2 ......An)
T for n species 

 

So, for a system involving multiple reactions, one can write the reactions in the following 

generalized fashion: 

 0=AS  

With, 

S :: Stoichiometric matrix = ( 1ν 2ν ...... mν )T  for m reactions. (Dimension:   m x n) 
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Example 4.1: Stoichiometry 

Given a reaction system: 

   

GDAEC
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CBA

++⇔+
⇔

+⇔+
⇔+

22
4

224

 

the stoichiometric matrix is: 
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� 

 

For a species Aj participating in a reaction r the following relation always holds: 

  
jjj ArArAr rbrfr ,,, −=

With 

jArr ,  :: Rate of formation of species Aj by reaction r 

jArrf , :: Rate of production (or consumption) of species Aj by forward   

 reaction of r 

jArrb , :: Rate of consumption (or production) of species Aj by backward   

 reaction of r 

 

This means that the rate, with which the species Aj is produced (or consumed), is defined as the rate 

of the forward minus the rate of the backward reaction. 

 

Obviously, the rate of production and consumption of the products and reactants are related through 

the stoichiometric coefficients. For each reaction, a unique quantity rξ  can be defined that is a 

normalized rate of reaction and which can be shown to be the time derivative of the extent of 

reaction: 
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j

j

Ar

Ar
r

r

,

,

ν
ξ =  

In homogeneous reaction systems, the production rate for a species is the cumulative production 

rate for this species over all reactions. If the dimensions of the reaction rates of a system are 

defined in mass per time unit then the reaction term n~ , which occurs in the component mass 

balances of a system may be written as follows: 

 ξTSn =~  

With 

ξ :: Normalized reaction rates vector = ( )Tmξξξ ....21 for m reactions 

 

4.3.2 Energy Balances 

 
Energy is the second most important extensive quantity in chemical process modelling. The energy 

balance has quite an involved history as it has been the central object of thermodynamics. Many 

books have been written on the subject of terminology of the thermodynamics and thermostatics 

and a lot has been talked about the shortcomings of the theories itself. Such a discussion goes 

beyond the scope of this project and we will simply accept the basic assumptions that form the 

foundation of the thermodynamic theory. 

 

In the most generic form, total energy is balanced. Total energy is the sum of internal, kinetic and 

potential energy, all of which are associated with mass. The communication with other systems, 

though, is not limited to these three forms of energy, but also heat and work affect the energy 

content of a system. 

 

Particularly heat is an interesting form of energy. Whilst today heat conduction is known to be based 

on kinetics - energy transfer on the molecular level - early in the last century, heat was thought to 

be a massless material that could be moved from one body to another. It was named caloric. 

Work is an accumulation of various other energy related effects, such as shaft (mechanical) work, 

volume work, electrical work and others.  
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A total energy balance for an arbitrary system, assuming reversibility of all processes, may be 

written in the form: 

 l
l

lh
h

hm
m

m wqEE
dt
d

ˆˆˆ ∑∑∑
∀∀∀

++= ααα  

with: 

E  :: Total energy := U + K + P 

U  :: Internal energy 

K  :: Kinetic energy 

P   :: Potential energy 

Ê  :: Energy stream 

q̂  :: Heat stream 

ŵ  :: Work stream 

 

The total energy balance is almost never used in this form. Usually a modified version of this basic 

energy balance is employed for modelling a process component. This modified version is derived 

from the basic energy balance through some simplifications and assumptions. Caution should be 

taken, though, when one uses derived energy models, because they are often incorrect or used 

incorrectly. One could easily introduce faults when one is further simplifying a derived model, 

because of lack of knowledge about previous assumptions and derivation steps. Knowledge about 

the common assumptions and the derivation steps is thus essential for the correct use of the 

different simplified energy models. 

In the thesis of dr. ir. M. Westerweele it is shown that the enthalpy balance, which can be derived 

from the energy balance, can, in most cases, be written as: 

 k
k

kh
h

hm
m

m wqH
dt
dH

ˆˆˆ ∑∑∑
∀∀∀

++= ααα  

 

4.3.3 Conclusions 

 
In this section we have derived that the variables that are appearing in the balance equations (i.e. 

transport and production variables) always appear linearly for physical and chemical systems. The 

nonlinearities of a process will therefore always emerge in the algebraic relations of the model. 

The balance equations can always be abstracted with the following simple form: 

 rBzAx
dt
d

+=  
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In which, 

A :: Interconnection matrix 

B :: Stoichiometric matrix, 

x :: Primary state vector 

z :: Transport rate vector 

r :: Reaction rate vector 

 

The matrices A and B  are completely defined by the model designers definition of the physical and 

species topology of the process under investigation. Therefore these matrices can automatically be 

constructed by Mobatec Modeller. The only things a model designer has to do to complete the 

model are: 

• Provide a link between the transport and reaction rate vectors and the primary state vector. 

Each element in the transport and reaction rate vectors has to be (directly or indirectly) 

linked to the primary state vector. This “linking” is done with one or more algebraic 

equations. If certain elements of the rate vectors are not defined in the algebraic equations, 

the mathematical system will have too many unknowns and can consequently not be solved. 

• Give a mapping which maps the primary state of each system in a secondary state. This 

mapping is necessary because usually transport and reaction rates are defined as functions 

of secondary state variables (a heat flow can, for example, be expressed as a function of 

temperature difference). 

 

4.4 Algebraic Equations 

 
In addition to the balance equations, we need other relationships to express thermodynamic 

equilibria, reaction rates, transport rates for heat, mass, momentum, and so on. Such additional 

relationships are needed to complete the mathematical modelling of the process. A model designer 

should be allowed to choose a particular relationship from a set of alternatives and to connect the 

selected relationship to a balance equation or to another defined relationship. As with the variables, 

we divide the algebraic equations into three main classes, namely system equations, connection 

equations and reaction equations. 
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4.4.1 System Equations 

 
For each system that is defined within the physical topology of a process, a mapping is needed 

which maps the primary state variables (x) into a set of secondary state variables (y = f(x)). The 

primary states of a system are fundamental quantities for describing the behaviour of the system. 

The fundamental state is defined intrinsically through the fundamental behaviour equations. The 

application of fundamental equations of component mass and energy balances intrinsically defines 

component mass and energy as the fundamental state variables. Alternative state variables are 

required for the determination of the transfer rate of extensive quantities and their 

production/consumption rate. 

 

The equations that define secondary state variables do not have to be written in explicit form, but it 

has to be possible to solve the equations (either algebraically or numerically) such that the primary 

state can be mapped into the secondary state. This means that each defined equation has to define 

a new variable. Equations that link previously defined variables together are not allowed, since the 

number of equation would then exceed the number of variables and the set of equations of this 

system would thus be over-determined. Consider the following example:  

 

Example 4.2: Redundant Equations 

It is often seen that people insist on using so-called “normalizing” equations, such as the 

sum of the fractions equals one, to complete their model definition. Such an equation is 

actually redundant when you think about it, because the definition of fraction intrinsically 

implies this: 

ne
nx T=:  

With 

x :: Molar fractions vector 

n :: Molar mass vector 

e :: unity vector =[1 1 1 1.....]T

 

Premultiplying this definition with the transposed unity vector 
Te gives: 

 1: ==
ne
nexe T

T
T

 

The two presented equations are linearly dependent. So, adding the equation 1=xeT
 to the 

model does not add any new information and could actually make computations more 

 48



Construction of the Equation Topology 
 
 

difficult. With our modelling method, an equation like this is not allowed, since it does not 

define a new variable. 

fferent secondary vari

� 

Due to the nature of the di ables, the system equations are subdivided in some 

bclasses: 

le transformations 

tate variable transformations are relationships that provide links between the internal state of a 

s appearing in kinetic laws, transfer laws, and other definitions 

su

 

State variab

S

system and various state variable

such as physical and geometrical properties. For example, the concentration c of the components in 

a system can be characterized by their molar masses n divided by the volume of the system V : 

 
V
nc =:  

It should be noted here that, although these equations are called state variable transformations it is 

not implied that these equations actually have to be used for substitutions and transformations. It is 

Processing systems may consist of a variety of materials in the form of pure materials, 

r any other combination of materials in any state of aggregation. The 

 geometrical properties and/or indirectly a 

 

Geome

The body volume and the boundary area (surface) of a system are two geometrical 

hese properties can be characterized by alternative sets of 

very often seen that modellers insist on doing substitutions, hereby transforming the fundamental 

balance equations. These often-cumbersome transformations are usually not necessary for solving 

the problem under investigation and can usually be omitted. 

 

Physical property relations 

mixtures, dispersions o

modelling of these systems potentially requires knowledge about the physical properties of 

all involved materials. Examples of physical properties are: viscosity, thermal conductivity, 

diffusivity, partial molar enthalpy and density. 

While they are usually thought of as constants, they may change with changing conditions in 

the system. They can also be a function of

function of other physical properties. The thermal diffusivity, for example, can be defined as 

a quotient of the thermal conductivity divided by the density times the heat capacity. 

trical property relations 

properties of a system. T

geometrical properties. For example, the body volume and boundary surface of a cylindrical 

system can be characterized by the radius and the length of the cylinder. 
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Because the system can change its shape as a function of the changing state, the 

geometrical properties of a system are a function of the systems state, and with it a function 

 

Equations o

Equations of state are equations that express algebraic relations between the application 

t characterize an individual system and that are supposed to hold at each 

called the equation of state of the ideal gas.  

Besides the enumerated types of equations there might be other relations that need to be 

4.4.2 Connection Equations 

 
the balance equations of a system, represent the transfer of 

tensive quantities to and from adjacent systems. These flow rates can be specified or linked to 

This relationship depends on the temperatures  and  of the origin and target object 

respectively. Temperature is of course a (secondary) state variable. The rate of heat transfer also 

, w  a

lly depends on the state of the two connected systems and the properties of 

the boundary in between. 

 

of the systems physical properties. For example, increasing the temperature of a system at a 

constant pressure, can expand the volume and boundary of a system. This can be 

considered as a result of changing the density (a physical property) of the contents of the 

system. The volume and mass of a system are always linked through the density. 

f state 

variables tha

moment during the evolution of the process. The term “equations of state” is borrowed from 

the thermodynamics as it is used, for example, for the well-known relation between the 

pressure p, the molar volume Vn and the temperature T of an ideal gas: 

  RTpVn =  

considered during the modelling process. 

 

The flow rates, which emerge in 

ex

transfer laws, which are usually empirical or semi-empirical relationships. These relationships are 

usually functions of the states, and the physical and geometrical properties of the two connected 

systems. For example, the rate of conductive heat transfer Q through a surface At between two 

objects with different temperatures can be given by: 

 )(: tarort TTUAQ −=  

orT tarT

depends on the overall heat transfer coefficient U hich is  physical property of the common 

boundary segment between the two systems, and on the total area of heat transfer At, which is a 

geometrical property. 

A transfer law thus describes the transfer of an extensive quantity between two adjacent systems. 

The transfer rate usua
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4.4.3 Reaction Equations 

 
Depending on the time scale of interest, we can divide reactions into three groups: 

• Very slow reactions (slow in the measure of the considered range of time scales). These 

reactions do not appreciately occur and may be simply ignored. 

• Reactions that occur in the time-scale of interest. For these reactions kinetic rate laws can 

be used. 

• Very fast reactions (relative to the considered time scale), for which is assumed that the 

 

As the n  do not further contribute to the discussion, they are left out in the sequel. 

For the “normal” reactions the reaction rates of the reactions in the relevant times scale must be 

defined by ki

empirical unction of a set of intensive quantities, such as 

ncentrations, temperature and pressure. For example, the reaction rate r of a first-order reaction 

equilibrium is reached instantaneously. 

on-reactive parts

netic rate equations. The production terms are linked to kinetic laws, which are 

 equations. They are usually written as a f

co

taking place in a lump is given by: 

 A
RT

E

cekVr
−

= 0:  

where 

r :: Reaction rate of a first-order reaction 

V :: Volume of the system 

k0 :: Pre-exponential kinetic constant 

E :: Activation energy for the reaction 

cting system 

 

Temper (s) of the reactive component(s) are state variables of the reactive 

system. Rea parameter such as activation energy and pre-

exponential factors are physical properties. In some cases, also geometrical properties of the system 

are par  as the porosity or other surface characterizing 

uantities. 

only the reaction outcome has to be given in the form of an equilibrium relation, which should hold 

R :: Ideal gas constant 

T :: Temperature of the rea

cA :: Concentration of component A 

ature and concentration

ction constants and their associated 

t of the definition of the kinetic law, such

q

 

The fast (equilibrium) reaction rates are not defined, because the equilibrium reactions are 

considered to have very fast dynamics relative to the time scale of the process. For these reactions 
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at every time instant. This is usually a nonlinear, algebraic relation that relates the masses of the 

involving species to each other (e.g.: for a reaction CBA +⇔  one may write: 
CB

A

cc
cK = ). 

production terms of the equilibrium reactions occur only in the component mass balances and 

 with the un

is a high index model. The problems and solutions regarding high index models are handled in the 

esigners insist on eliminating the extensive variables from the model 

 

involve the extensive variables is that often only the evolution of the application variables is of 

terest. Also, the transfer laws and kinetic laws are usually given in terms of intensive state 

gners think they must transform the accumulation terms and 

rf rm a so-called state variable transformation. Most textbooks which cover modelling also 

mations, often even without mentioning why. But are these, often 

 Mobatec 

odeller). In that case, or in the case of highly nonlinear models, it may be time consuming or 

even impossible to obtain an explicit model. Computational causality is not a physical phenomenon, 

Consequently, unlike the situation where no equilibrium reactions occur, the initial values of the 

masses of the involved species cannot be arbitrarily chosen because the quantities of some species 

in the system are now directly related to the quantities of some other species in the system. This 

results in some differential equations of the system being directly related to each other. Also, the 

cannot be determined directly from system equations. As defined connections, the result 

thesis of dr. ir. Westerweele. 

For each defined reaction a modeller must either specify the kinetics or give an equilibrium relation. 

 

4.5 Substitution, yes or no? 

 
It is often seen that model d

equations. The main reason that is brought up for this preference to write a model that does not

in

variables. Therefore most model desi

ope

perform these transfor

cumbersome, state variable transformations necessary to solve the considered problems? 

 

In most cases, the transformations are not necessary. There are several reasons to consider the 

differential algebraic equations (DAEs) directly, rather than to try to rewrite them as a set of 

ordinary differential equations (ODEs): First, when modelling physical processes, the model takes 

the form of a DAE, depicting a collection of relationships between variables of interest and some of 

their derivatives. These relationships may be generated by a modelling program (such as

M

so it is rather inconvenient if a model designer has to determine the (numerically) correct causality 

of the equations. Also, reformulation of the model equations tends to reduce the expressiveness. 

Furthermore, if the original DAE can be solved directly it becomes easier to interface modelling 

software directly with design software. Finally, reformulation slows down the development of 

complex process models, since it must be repeated each time the model is altered, and therefore it 

is easier to solve the DAE directly. 
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These advantages enable researchers to focus their attention on the physical problem of interest. 

There are also numerical reasons for considering DAEs. The change to explicit form, even if possible, 

can destroy sparsity and prevent the exploitation of system structure.  

 

Small advantages of transforming the model to ODE form can be that for (very) small systems an 

analytical solution is available and that sometimes less information of physical properties is needed 

when substitutions are being made (sometimes, some of the parameters can be removed from the 

stem equations when substitutions are made). Another advantage could be that, by doing 

tter insight in the model structure during model 

evelopment. 

ntrol is added in the last step of our modelling methodology and can be seen “separately” from 

the previous steps, since for most models that are meant for control, first the model without the 

o structed. The control part is usually added in a later step and can be superimposed 

 the model without affecting the previous modelling steps. Controllers process measurement and 

 to follow a trajectory (the 

rvo or steering problem) or the controller may serve the purpose of compensating for undesired 

e input variables in order to 

sy

substitutions, some primary state variables are removed from the model description which could 

take the code faster, because less variables have to be solved. In general, though, these advantages 

do not outweigh the disadvantages. 

 

If one does want to perform substitutions, it is recommended that these are done at the very end of 

the model development and not, as is generally seen, as soon as possible. Postponing the 

substitutions as long as possible gives a much be

d

 

4.6 Control 

 
Co

contr llers is con

on

setpoint information. The first taken from the process state, the latter being an input to the process 

and determining its desired behaviour. Control generates (information) signals as output, which in 

general affect the flow of extensive quantities inside the process. 

 

Adding a controller to a process has only one goal, namely to modify the dynamic behaviour to the 

process to be controlled, with the objective of imposing a desired behaviour. The controller may be 

introduced for different reasons. The controller may force the process

se

effects of the environment has on the process (disturbance rejection). 

Whatever the control objectives are, there is always a need to monitor the performance of the 

process that needs to be controlled. This is done by measuring the values of certain process 

variables (such as concentrations, fluid height, temperatures, flow rates, pressures, etc.). The 

measurements are processed by the controller, which then steers som

control the process. Usually a process has a number of available input variables which can be 
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adjusted freely. Which ones are selected to use as input (i.e. manipulatable) variables is a crucial 

question, as the choice will affect the quality of the control actions we take. 

 

Clearly, there is a flow of information to and from the controller and therefore two new elements 

need to be introduced, namely the information system (i.e. the controller itself) and the information 

nnection (through which the information “flows”: The target object of the information connection 

d to any system (either lumped, distributed, source, sink, 

ve. The control valve is the most frequently encountered final control 

nection 

variables and never system or reaction variables, since a controller cannot change the state of a 

stem directly. It can only manipulate the flow of extensive quantities, which in turn affect the 

co

reads variables of the origin object). 

The input (i.e. the measurement) to the information system can, in principle, be any time dependent 

variable of the process. Consequently, the information connection that provides the input to the 

information system can be connecte

steady state or composite), any connection or any other information system (cascade control, 

providing “new” setpoints) of the physical topology of the process. Most of the time, however, the 

measurements are closely related to the primary states of a process and the information will come 

from lumped systems.  

The controller receives the measurement information and decides what action should be taken. The 

variables that can be manipulated by the controller are usually some connection characteristics, 

such as the position of a val

element, but not the only one. Other typical final control elements for chemical processes are: relay 

switches (providing on-off control), variable-speed pumps and variable-speed compressors. 

 

From a physical point of view, the variables that can be manipulated will always be con

sy

state of the two interconnected systems. Sometimes, however, either for convenience or as a 

simplification, a controller is made to directly affect some secondary state variables of a source or 

sink system. A controller that directly influences the temperature of a heat stream, for example, is 

physically impossible but often seen in modelling (especially if the temperature of the stream can be 

adjusted relatively quickly compared to the dynamics of the controlled system). The output of an 

information system can therefore be connected to any connection, any source or sink system or any 

other information system. 

The possible information flows are summarized in figure 4.1. 

 

Figure 4.1: Possible information flows to and from information systems. 
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Controllers are dynamic elements. The controller equations can consist of algebraic, differential and 

integral equations and since the controller normally has a state, the order of the overall model is 

increased by adding control elements to the physical topology of the process. 

 

Further discussion of control, which obviously has a lot more to it than the few things that are 

mentioned in this b eader to find out 

ore about the numerous subjects on control, such as feedback control, feedforward control, 

rief section, is not considered to be relevant. It is left to the r

m

inferential control, PID, LQR, LQG, H2, H∞, state feedback, cascade control, etc.. All these types of 

controllers can be implemented in an information system, as long as they are realizable and 

presented in a DAE form. 
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4.7 Implementation Details 

 

The construction of the physical topology and species topology of a process are rather straight 

forward and do, in principle, not need any specific close attention. When introducing the equations 

into the model, we are faced with some non-trivialities that need some closer look.  

This section discusses the most important features of the implementation of the construction of the 

equation topology. 

 

4.7.1 Equation Classification 

 
The algebraic equations, that are needed to complete the model definition, where divided into three 

main groups in section 4.4. Mobatec Modeller contains a database in which a set of possible 

algebraic equations is listed. In this database, which can, of course, be further expanded by a model 

designer, the main groups are further subdivided. Careful consideration should be given, though, 

were new algebraic equations are placed. An algebraic equation can be placed in one of the following 

groups (the groups that actually contain the equations are bold faced and underlined): 

 

• System equations 

 

• Connection Equations 

o Mass Connections 

 Uni-Directional 

• Unmodeled/fast 

• Rate 

 Bi-Directional 

• Unmodeled/fast 

• Rate 

o Phase Transition Connections 

 Unmodeled/fast 

 Rate 

o Heat Connections 

 Unmodeled/fast 

 Rate 

o Work Connections 
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 Unmodeled/fast 

 Rate 

 

• Reaction Equations 

o Unmodeled/fast 

o Rate 

 

• Species Equations 

 

• Control/Information Equations 

 
 

 Two “new” groups were added to the main groups, namely species and control/information 

equations.  

The species equations are equations that represent physical properties of species (or groups of 

species). Most of the time, these equations would be assigned to the group of systems equations, 

but because these equations often hold independent of the system and can be easily coupled to a 

species database, a separate group is defined. 

Control action usually affects some connection characteristics (such as the position of a valve), but 

sometimes, for convenience or as a simplification, a controller directly affects the secondary state 

variables of a source or sink system (for example, when a controller directly controls the 

temperature of a stream, which is, of course, physically impossible, but often seen in modelling). 

Also, the control equations are usually very different from the other algebraic equations, since they 

can also hold differential and integral terms. For these reasons the control systems and connections 

where defined in section 4.6 and their equations are placed in a separate group. 

In some cases a system or connection needs “information” of some variables of another system or 

connection in order to calculate specific quantities. For example, in a tank with a liquid and a gas 

phase, the gas phase volume is usually defined as the (fixed) volume of the tank minus the liquid 

volume. So in order to calculate the gas volume, the system (or systems) representing the gas 

phase needs information (i.e. the liquid phase volume) from the system (or systems) representing 

the liquid phase. This information can be transferred via information connections. 

 

4.7.2 Modeling Objects 

 
There are 3 “modelling objects” defined within Mobatec Modeller, namely Systems, Connections 

and Reactions. Algebraic equations need to be added to these objects to complete the model that is 
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being made (keeping in mind that the differential equations (i.e. the balance equations) are 

generated automatically). 

Note: Species is not listed as a modelling object, since no algebraic equations can be appointed to 

species. Species can only hold parameters. The algebraic equations that use these species 

parameters are always calculated in one of the modelling objects. In other cases, no species 

parameters are even needed, because the physical properties are calculated in external physical 

property routines. 

 

When a model designer is constructing a process model, the presented equation classification comes 

in handy, because for each modelling object only a limited range of equations can be chosen and 

this reduces the chances of making silly mistakes. When, for example, a mass connection is defined 

as being bidirectional, the model designer must choose if he wants to define the flow rate through 

the connection or if he wishes to leave this flow unmodeled. Either way, he is directed to a set of 

possibilities: a set of possible rate equations or a set of possible constraints. This way the modeller 

becomes more aware of what assumptions he makes. Also, the assumptions are automatically 

documented and very easily traced and thus very easily changed. 

 

4.7.3 Computational Order of Equations 

 
In the fourth and fifth steps of our modelling approach the algebraic equations are added to the 

model definition. For each modelling object (i.e. system, connection or reaction) these algebraic 

equations can, in principle, be chosen randomly from the database. In doing so, the problem arises 

that not every numerical equation solver will be able to solve the equations since the equations are 

not in the so-called correct computational order and are not always in (correct) explicit form. There 

are solvers, such as DAE-1 solvers, that can handle implicit algebraic equations, but when the 

equations are simplified by performing preliminary symbolic manipulations, a much more efficient 

computational code can be obtained. A very important step to achieve an efficient computational 

code for DAEs, is to solve the equations for as many algebraic variables as possible, so that it is not 

necessary to introduce these variables as unknowns in the numerical DAE-solver, since they can be 

calculated at any call of the residual routine from the information available. 

 

Consider the simple pair of equations: 

         (1) 42 12 =− xx

         (2) 071 =−x

In order to solve these equations directly, they must be rearranged into the form: 

          (3) 71 =x

 58



Construction of the Equation Topology 
 
 
         (4) 42 12 += xx

The implicit equation (2) cannot readily be solved for  by a numerical program, whilst the explicit 

form, namely (3), is easily solved for and only requires the evaluation of the right-hand-side 

expression. Equation (1) is rearranged to give (4) for , so that when is known,  can be 

calculated.  

1x

1x

2x 1x 2x

 

The rearranged form of the set of equations can be solved directly because it has the correct 

computational causality. This computational causality is, quite obviously, not a physical 

phenomenon, but a numerical artefact. Take, for example, the ideal gas law:  

nRTpV =  

This is a static relation, which holds for any ideal gas. This equation does not describe a cause-and-

effect relation. The law is completely impartial with respect to the question whether at constant 

temperature and constant molar mass a rise in pressure causes the volume of the gas to decrease 

or whether a decrease in volume causes the pressure to rise. For a solving program, however, it 

does matter whether the volume or the pressure is calculated from this equation. 

 

It is rather inconvenient that a model designer must determine the correct computational causality 

of all the algebraic equations that belong to each modelling object, given a particular use of the 

model (simulation, design, etc.). It is much easier if the equations could just be described in terms 

of their physical relevance and that a computer program automatically determines the desired 

causality of each equation and solves each of the equations for the desired variable, for example by 

means of symbolic manipulation. 

 

Whether the entered equations are in the correct causal form or not, they always have to adhere to 

some conditions: 

• For any set or equations to be solvable, there must be exactly as many unknowns as 

equations. 

• It must be possible to rearrange the equations such that the system of equations can be 

solved for all unknowns. 

 

The first condition, called the Regularity Assumption, is obviously a necessary condition. It can be 

checked immediately and all numerical DAE solvers take this preliminary check. 

In order to solve a set of equations efficiently, the equations must be rearranged in Block Lower 

Triangular (BLT) form with minimal blocks, that can be solved in a nearly explicit forward. 
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When a DAE-1 model is formulated and proper initial conditions have been defined, then the 

information flow of a simulation can be depicted as in figure 4.2. Starting from the initial conditions 

0x , the secondary state variables y  of all the systems can be calculated. Subsequently, the flow 

rates z  of all the defined connections and the reaction rates r  of all the defined reactions can be 

calculated. These rates are the inputs of the balance equations, so now the integrator can compute 

values for the primary state variables x  on the next time step. With these variables, the secondary 

state y  can be calculated again and the loop continues until the defined end time is reached. 

 
Figure 4.2: Information flow for a simulation. 

 

For now, we are only concerned with the algebraic equations (the right hand side of figure 4.2), 

which means that we can consider the primary state variables x of each system as known. Systems 

are only interacting with each other through connections and therefore the calculation of the 

secondary variables of each system can be done completely independent of other systems. 

The system equations map the primary state into a secondary state for each individual elementary 

system and each new equation has to define a new (secondary) variable. In some cases two or more 

equations may introduce two or more new variables, such that these equations have to be solved 

simultaneously in order to get a value for the variables. This does, however, not occur very 

frequently.  

For connection and reaction equations a similar conclusion can be drawn. For these equations the 

secondary variables of the systems ( y ) can be considered as known (see figure 4.2). 

 

Although it is good to know about computational causality, a model designer does, in principle, not 

have to worry about BLT forms, because Mobatec Modeller handles this automatically. 
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4.7.4 Adding Equations to a Modeling Object 

 

If equations need to be added to a specific modelling object, select this object and go to the 

equations tab. The equations tab is subdivided in five tabs, namely: Defined Equations, Sorted 

Equations, Parameters, Initial Values and Object Class. On the Defined Equations tab press “Define 

Equations” and a database of available equations (for the selected object) will be shown. Select the 

equations that need to be added from this (or any other) database and press “OK”. The selected 

equations will appear in the defined equations dialog box. 

The Sorted Equations tab shows all equations that can be solved in the correct solving order (BLT 

form). In general, when selecting equations, there will be more variables than equations, so not all 

equations will be shown at first. This means that some of the available variables will have to be set 

“constant” in order to get a solvable set of equations (in which the number of unknowns equals the 

number of equations) for the object under consideration. Consider the following simple example: 

 

Example 4.3: Defining Concentration in a System 

Consider a system with a number of components. If the concentration of those components 

needs to be known, the following equations could be defined in Mobatec Modeller: 

   

[])(
*
*[][]

nsumnt
Vrhont
Vcn

=
=
=

 

In which c[ ] is the vector of component concentrations, n[ ] is the vector of component 

hold-ups, V is the system volume, nt is the total molar hold-up and rho is the density. 

This set of 3 equations contains 5 variables (n[ ], c[ ], V, nt and rho). In the presented 

modelling methodology all dynamic variables should be either directly or indirectly related to 

the fundamental extensive quantities (i.e. the primary state variables for which the balance 

equations are setup). These fundamental extensive quantities are considered to be “known” 

(i.e. “computed” via the differential equations).  

So, for this example the molar hold-up n[ ] is “known”, which means that the total hold-up 

nt can be solved from the last equation. The Defined Equations tab will therefore show only 

one equation:  as a “sorted equation”. The “Computed & Knowns” will hold n[ 

] and nt. The remaining variables (c[ ], V and rho) will be listed in the “Selectable” list.  

[])(nsumnt =

If the density rho of the mixture is considered to be constant, it can be selected from the 

“Computed & Selectable” list on the Defined Equations tab. By doing this, the variable will be 

added to the “Constants” list and will be considered a parameter that is known. 

Consequently, Mobatec Modeller will detect that the volume V can now be calculated and 
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with this also the concentration c. The “Sorted Equations” will be shown in the correct 

computational order: 

   

Vcnc
VrhontV

nsumntnt

*[][]:[]
*:

[])(:

=
=
=

The “Computed & Knowns” will list n[ ], c[ ], V and nt. The “Constants” variables will list only 

the density rho. The number of “defined” equations is now equal to the number of “solvable” 

equations. 

� 

 

After identifying all parameters of a modelling object (and thus making it structurally solvable), the 

parameters as well as the initial values need to be specified. If this is done for all modelling objects, 

Mobatec Modeller can generate output code that can serve as an input to existing problem solvers 

(such as e-Modeler (Process Studio), Matlab, ACM, etc.). 

 

4.7.5 Variable Prefixes in Equations 
 

Several “prefixes” of variables in the definition equations are used in Mobatec Modeller to aid the 

user in defining relations that can be used generally. For example, when you want to make an 

equation that describes the heat flow as a function of the temperature difference of the two 

interconnected systems, you’ll need to make an equation that looks like this: "q = U*A*(or.T - 

tar.T)". 

In this equation the variables q, U and A "belong" to the connection and don't need a prefix. The 

temperatures T refer to the origin and target of the connection and therefore need the prefix "or." 

and "tar." respectively. 

  

The prefix "glob." is used to refer to a variable (i.e. a parameter) that is used globally and which is 

the same in the entire model. 

  

Prefix "spec." is used when an equation refers to a variable that is specific to a certain species. For 

example the specific heat Cp or specific density Rho of a species. 

  

Prefix "sys." is used when defining Reaction Equations to refer to variables that are defined in the 

system the reaction is taking place in. If no prefix is used, when defining a reaction equation, the 

variable will belong to the reaction.  
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For example, lets define an equation that defines the first order reaction rate for a reaction A  B. 

Mathematically one writes: r = k * c_A * V. 

In this case the variables r and k belong to the specific reaction and the concentration of component 

A and the volume are defined in the system the reaction is taking place in. The translation would 

look something like: 

r = k*sys.c[1]*sys.V 

  

Where sys.c[1] refers to a specific element of the vector variable c[ ] (Component A in this case). 

The specific component should be selected when you install the equation in a specific reaction. 

 

4.7.6  Operators and Functions 

 

Mobatec Modeller allows to construct dynamic process models that are independent of the solver 

with which the model is going to be solved. In order to achieve this, a syntax has to be defined for 

representing the most used operators and functions.  

The following operators and functions can be used in Mobatec Modeller:  

 Function Result 
x + y Adds x to y 
x – y Subtracts x from y 
-x Minus x 
x * y Multiplies x with y 
x / y Divides x by y 
x^y x to the power of y 
x[ ] .* y[ ] Dotproduct of vectors x[ ] and y[ ]  

(i.e. x[ ] .* y[ ] = x1*y1 + x2*y2 + ….) 
  
SUM(x[ ]) Sum of vector x[ ] (i.e. SUM(x[ ]) = x1 + x2 + x3 + ….) 
SIN(x) Calculates sine of x 
COS(x) Calculates cosine of x 
TAN(x) Calculates tangent of x 
ddt(x) Calculates the derivative with respect to time of argument x 
SQRT(x) Calculates the square root of x 
ABS(x) Determines the absolute of x 
SIGN(x) Yields 1, 0 or  –1 based on the sign of x 
EXP(x) Calculates the exponent (base e) of x 
LN(x) Calculates the natural (base e) logarithm of x 
LOG(x) Calculates the base 10 logarithm of x 
MAX(x, y) Returns the maximum of x and y 
MIN(x,y) Returns the minimum of x and y 
PI Number Pi = 3.1415 

This list of available functions can and will be expanded in future releases. 
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4.7.7 Boolean Expressions 

 

Very often it is necessary to introduce conditional statements in the form of Boolean expressions 

into the model definition. For example, when a pipeline has a check valve in it, the gas flow through 

this line could be pressure driven when the pressure drop is positive. The flowrate should be zero, 

however, when the pressure drop is negative. When this example is modeled as uni-directional mass 

connection between two systems (the origin and the target), the used equation could have the 

following form: 

  

END
Fv

ELSE
PtarPorKVFv

THENPtarPorIF

0

)..(*
..

=

−=
>

In which KV is a measure for the resistance of the line and Fv is the volumetric flowrate through the 

line. 

 

A Boolean expression can, of course, also be nested.  

The following relational and logical grammar is used within Mobatec Modeller: 

 
String Description 
IF If; compulsory part of conditional statement 
THEN Then; compulsory part of conditional statement 
ELSE Else; compulsory part of conditional statement 
END End; compulsory part of conditional statement 
== Equal to; used within Boolean expression to check equality 
> Greater than 
< Less than 
>= Greater than or equal to 
<= Less than or equal to 
# Not equal to 
!= Not equal to 
AND And 
OR Or 
NOT And not 
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