
Five Steps for Building

Consistent Dynamic Process Models
and their Implementation in the Computer Tool Modeller

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Westerweele, Mathieu R.

Five steps for building consistent dynamic process models : and their im-
plementation in the computer tool Modeller / by Mathieu R. Westerweele.-
Eindhoven : Technische Universiteit Eindhoven, 2003.
Proefschrift. - ISBN 90-386-2964-8
NUR 913
Trefwoorden: procesregeling en dynamica / chemische technologie; fysisch-
chemische simulatie en modellering / dynamische simulatie; methodologie /
wiskundige modellen / computerapplicatie; algoritme
Subject headings: process control and dynamics / chemical engineering;
physicochemical simulation and modelling / dynamic simulation; methodol-
ogy / mathematical models / computer application; algorithm

Omslag: Govert Sleegers
Druk: Universiteitsdrukkerij TU Eindhoven, The Netherlands

Copyright c° 2003 by M.R.Westerweele

All rights reserved. No parts of this publication may be reproduced or utilized in any

form or by any means, electronic or mechanical, including photocopying, recording or

by any information storage and retrieval system, without permission of the copyright

holder.

Five Steps for Building

Consistent Dynamic Process Models
and their Implementation in the Computer Tool Modeller

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,
op gezag van de Rector MagniÞcus,

prof.dr. R.A. van Santen, voor een commissie
aangewezen door het College voor Promoties

in het openbaar te verdedigen op
maandag 14 april 2003 om 16.00 uur

door

Mathieu Ruurd Westerweele

geboren te Oostburg

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.Dipl-Ing. H.A. Preisig
en
prof.dr.ir. A.C.P.M. Backx

THERE IS NO TIME LIKE THE PRESENT

Mark Twain said, �I have been through some terrible
things in my life, some of which actually happened�.

These words hold great wisdom;
the wisdom of knowing that there is no sense worrying

about the past or fearing the future.
Your past will not change,

and your future concerns may never come.

Many people spend a great deal of time and energy
thinking about past problems and future concerns,

while the present is passing them by.
Remember the here and now is a gift,
which is why they call it the �present�.

Treat it like a present,
enjoy it to the fullest and make the most of it.

Don�t let your life pass you by,
focus on the present and enjoy today!

- Glen Hopkins

vi

Contents

Summary xi

Voorwoord xiii

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Application Dependency of Models 4

1.3 Structured Modelling Methodology 5

1.4 Overview of Related Work . 7

1.5 Scope of this Project . 9

1.6 Outline and Intention of the Thesis 10

I Modelling Methodology 13

2 Introduction to Modelling 15

2.1 Three Principal Problems . 15

2.2 The Modelling Process . 17

2.3 Formulation of the Model . 18

2.3.1 Primary Modelling Operation 18

2.3.2 Assumptions about the Nature of the Process 20

3 Hierarchical Organisation: The Physical Topology 21

3.1 Building Blocks . 21

3.2 Domains . 26

3.3 Fundamental Time Scale Assumptions 27

3.4 Hierarchical Organisation . 33

4 Chemical Distribution: The Species Topology 39

4.1 Chemical Distribution . 39

4.2 Permeability of Mass Connections 40

4.3 Uni-directionality of Mass Connections 42

vii

viii Contents

4.4 Reactions . 42

5 Mathematical Description: The Equation Topology 43

5.1 Variable ClassiÞcation . 44

5.1.1 System Variables . 44

5.1.2 Connection Variables . 45

5.1.3 Reaction Variables . 46

5.2 Fundamental State Variables and Equations 47

5.3 Balance Equations . 48

5.3.1 Mass Balances . 48

5.3.2 Energy Balances . 55

5.3.3 Conclusions . 58

5.4 Algebraic Equations . 59

5.4.1 System Equations . 59

5.4.2 Connection Equations 62

5.4.3 Reaction Equations . 63

5.4.4 Summary . 64

5.5 Linear and Linearised Models 65

5.5.1 Linearisation . 65

5.5.2 State Space Description for Linear Models 67

5.5.3 State Space Description for Linearised Models 71

5.6 Substitution, yes or no? . 73

5.7 Control . 74

6 Assumptions: Problems and Solutions 77

6.1 High-index Models . 78

6.2 Assumptions Leading to High-index Models 79

6.3 Index Reduction Algorithms . 80

6.3.1 Simple Index Reduction Algorithm 81

6.3.2 Full Index Reduction Algorithm 84

6.4 Steady-State Assumptions . 89

6.5 Events and Discontinuities . 94

6.6 Variables and Algebraic Equations for Composite Systems . . . 98

6.7 Summary and Conclusions . 99

II Implementation 103

7 Introduction to Implementation 105

7.1 Implementation Details . 107

Contents ix

8 Construction of the Physical Topology 111

8.1 Handling Complexity . 111

8.2 Unique System IdentiÞers . 113

8.3 Basic Tree Operations . 114

8.4 Representation of Connections 119

8.4.1 Making a New Connection 120

8.4.2 Graphical Representation of Connections 120

8.5 Consequences of Manipulations on the Physical Topology . . . 123

8.5.1 Loose Connections . 123

8.5.2 Open Connections . 125

8.5.3 Possible States of Connections 126

8.6 Repetitive Structures . 127

9 Construction of the Species Topology 131

9.1 DeÞning Plant Species and Reactions 131

9.2 Injecting Species and Reactions 132

9.3 Permeability and Uni-Directionality of Mass Connections . . . 134

9.4 Propagation of Species . 135

9.5 Consequences of Manipulations 141

10 Construction of the Equation Topology 143

10.1 Balance Equations . 143

10.2 Equation ClassiÞcation . 146

10.3 Computational Order . 148

10.4 Output of Modeller . 156

10.4.1 Documentation File . 156

10.4.2 Code File . 156

III Examples and Conclusions 159

11 Examples 161

11.1 Tank With Level Measurement 162

11.1.1 Problem Description . 162

11.1.2 Step 1: Physical Topology 162

11.1.3 Step 2: Species Topology 163

11.1.4 Step 3: Balance Equations 163

11.1.5 Step 4a: Connection and Reaction Equations 163

11.1.6 Step 4b: System Equations 164

11.1.7 Discussion . 165

11.2 Extraction Process . 166

11.2.1 Problem Description . 166

x Contents

11.2.2 Step 1: Physical Topology 166
11.2.3 Step 2: Species Topology 167
11.2.4 Step 3: Balance Equations 168
11.2.5 Step 4a: Connection and Reaction Equations 169
11.2.6 Step 4b: System Equations 170
11.2.7 Discussion . 170

11.3 Dynamic Flash . 172
11.3.1 Problem Description . 172
11.3.2 Step 1: Physical Topology 173
11.3.3 Step 2: Species Topology 173
11.3.4 Step 3: Balance Equations 174
11.3.5 Step 4a: Connection and Reaction Equations 176
11.3.6 Step 4b: System Equations 177
11.3.7 Discussion . 178

11.4 Distillation Column . 179
11.4.1 Problem Description . 179
11.4.2 Step 1: Physical Topology 179
11.4.3 Step 2: Species Topology 180
11.4.4 Step 3: Balance Equations 181
11.4.5 Step 4a: Connection and Reaction Equations 181
11.4.6 Step 4b: System Equations 181
11.4.7 Discussion . 182

12 Conclusions and Future Work 183
12.1 Conclusions . 183

12.1.1 Systematic Modelling Methodology 183
12.1.2 Minimal Representation of Process Models 186
12.1.3 Automatic Documentation of Assumptions 187
12.1.4 Local Handling of Assumptions 187
12.1.5 Education . 188

12.2 Suggestions for Further Research 188
12.2.1 Modelling . 189
12.2.2 Implementation . 190

Bibliography 193

A Module CamTools 201

B Example of Modeller Output Files 205

Samenvatting 212

Curriculum Vitae 215

Summary

The main goal of this research project was the development of a systematic
modelling method for the design of Þrst principles based (i.e. based on physical
insight), dynamic process models for macroscopic physical, chemical and/or
biological processes. The modelling of such processes is one of the most impor-
tant tasks of a process engineer, for these models are used on a large scale for
all kinds of engineering activities, such as process control, opimisation, sim-
ulation, process design and fundamental research. The construction of these
models is, in general, seen as a difficult and very time consuming task and is
preferably handed over to �modelling experts�. This does not have to be the
case if a clear, stepwise method is adhered to.

The modelling methodology is based on the hierarchical decomposition of
processes into thermodynamic systems and consists of Þve steps: (i) Subdivide
the process into smaller parts, that can be easily (mathematically) described
individually. In this step, the so-called Physical Topology is constructed, using
only two basic building blocks, namely Systems, which represent capacities
that are able to store the fundamental extensive quantities (such as component
mass, energy and momentum), and Connections, which describe the transfer
of these fundamental extensive quantities through the common boundaries of
the interconnected systems. (ii) Construct the Species Topology. The Species
Topology describes the distribution of all involved chemical and/or biological
species as well as all their transformation into other species in the various
parts of the process. (iii) For each relevant extensive quantity (such as, for
example, component mass or energy) of each system write the corresponding
balance equations. (iv) Augment the model equations with deÞnitions and
equations of state and choose the transfer laws and kinetic laws that express
the ßow and production rates (present in the balance equations). Also deÞne
possible constraining assumptions (i.e. �simpliÞcations� that may lead to high-
index DAEs (Differential Algebraic Equations)). The resulting mathematical
problems can always be resolved by applying a model reduction. (v) Add the
dynamic behaviour of the information processing units, such as controllers.

These steps for building a model do not have to be done strictly in this

xi

xii Summary

sequence - at least not for the overall model. It is left to the model designer
when the details are being speciÞed in each part of the model.

This Þve step procedure of building dynamic process models always results
in a differential algebraic system with an index of one. The model can be
used for solving certain problems related to the process or it can be further
modiÞed by applying mathematical manipulations, such as linearisation or
model reduction.

An other important goal of this project was the implementation of the
modelling methodology into a new computer tool, called �TheModeller�. This
tool is designed to effectively assist a model designer with the construction of
consistent process models and to (signiÞcantly) reduce the needed time and
overall effort. With the modelling tool, the process models can be built us-
ing two main operations, namely reÞning existing systems (the top-down ap-
proach) or grouping systems (the bottom-up approach). These two operations
can be used interchangeably and all performed actions can be undone (multi-
ple undo/redo mechanism). The software allows to store, retrieve, import or
export models (or parts of models) at any stage of the model deÞnition. This
allows for a safe mechanism of model reuse.

The computer tool is implemented with BlackBox Component Builder 1.4
(Component Pascal), which is a component oriented programming language
comparable to Java.

Voorwoord

�Het duurt even, maar dan heb je ook wat!�, zegt men wel eens. Dat gaat ook
zeker op voor dit werk: het heeft iets langer geduurd dan gebruikelijk om dit
promotiewerk af te ronden, maar het resultaat is een stuk werk waar ik trots
op ben en waar ook anderen iets aan zullen hebben. Tijdens mijn onderzoek
is een methodiek ontwikkeld waarmee men (veel) sneller dynamische proces
modellen kan opstellen, die bovendien �automatisch� worden gedocumenteerd
door het gebruik van deze methode. De ontwikkelde methode is reeds gedeel-
telijk gëõmplementeerd in het computerprogramma �MODELLER�, waarmee
het effect van de methode zeer goed kan worden gedemonstreerd.

Ik heb de afgelopen 5 jaar veel geleerd en daar ben ik vele mensen dankbaar
voor. Allereerst natuurlijk een woord van dank aan mijn dagelijkse begeleider
en promotor professor Heinz Preisig. Heinz, ik vond het erg plezierig om met
je samen te werken. Je was altijd - nou ja, meestal - open voor discussies en
hebt me veel geleerd op velerlei gebieden. Ik hoop dan ook het contact niet te
verliezen nadat deze promotie is afgerond, zodat er nog veel goede dingen uit
een blijvende samenwerking kunnen voortvloeien. Ook mijn copromotor Ton
Backx, de leden van de kerncommissie, Okko Bosgra en Wolfgang Marquardt,
alsook de overige leden van de promotiecommissie, Costas Pantelides, Piet
Kerkhof, Jos Keurentjes en Johan Wijers, wil ik van harte bedanken voor hun
steun, interesse, constructieve discussies en feedback.

In de eerste jaren van mijn promotieonderzoek was Martin Weiss mijn
directe begeleider. Ik heb van hem veel geleerd (vooral op wiskundig gebied)
en vind het jammer dat hij er in de latere fase van mijn onderzoek niet meer
bij was. Martin, bedankt voor je steun en interessante discussies. Ook de
studenten, Steven Grijseels en Reinout Dekkers, die mij in de eerste fase van
mijn onderzoek hebben geholpen met het uitzoeken van bepaalde zaken, wil
ik hartelijk bedanken voor hun inzet en bijdrage.

Naast mijn bijdrage op wetenschappelijk gebied heb ik ook op educatief
gebied een steentje proberen bijdragen. Ik wil Henk Leegwater hartelijk be-
danken voor de ruime mogelijkheden mezelf op dit gebied te ontwikkelen. Ik

xiii

xiv Voorwoord

heb van deze periode ontzettend veel geleerd en heb daarin ook zeer veel plezier
gehad. Ook de student-assistenten, M�hamed, Leo, Frans, Hans-Jan, Hans en
Alex, die hebben geholpen het practicum op poten te zetten en te houden, wil
ik hartelijk bedanken voor hun enorme inzet.

Voor de Þjne werksfeer die rond mij heerste in de eerste fase van mijn on-
derzoek wil ik graag mijn ex-collega aio�s Annelies, Georgo, Gerwald, Patrick,
Roel en Uwe, alsook de overige medewerkers van onze ex-vakgroep, Tiny,
Tanja, Thea, Frank, Stefan, Ivonne, Henk, Martin en Heinz, bedanken.

In de tweede fase van mijn onderzoek was ik gehuisvest bij de regeltechniek
vakgroep van de faculteit electrotechniek. Ik wil deze gehele vakgroep en met
name Paul van de Bosch hartelijk bedanken voor hun bereidheid onze groep op
te nemen in de hunne alsook voor de plezierige werksfeer tijdens de afronding
van mijn promotiewerk.

Govert Sleegers wil ik bedanken voor het ontwerpen van de omslag van dit
proefschrift. Goof, ondanks dat je waarschijnlijk geen bal van de inhoud van
dit proefschrift begrijpt (of wilt begrijpen), vind ik toch dat je er erg goed in
geslaagd bent een beeld hiervan te schetsen op de omslag. Hartelijk dank voor
het fraaie ontwerp.

Voor het wekelijkse vertier in de vorm van squash, pool, spelletjes dan wel
muziek wil ik graag Xander, Jip, Bart, Martin, Arjan, Paul, Emiel, Patrick, Ig-
nace, Jan, Edwin, Luc, Ruben, Rogier en de leden van Quadrivium en Bigband
de Mooche bedanken alsook alle anderen die me tijdens deze brainstormsessie
niet te binnen zijn geschoten.

Mijn ouders en schoonouders alsook de rest van mijn familie wil ik hartelijk
bedanken voor hun steun, geduld en interesse. Pa en ma, hartelijk bedankt
mij de mogelijkheid te bieden zover te kunnen komen. Al mijn aangetrouwde
�broers� en �zussen�, Frank, Kurt, Mark, John, Annemiek en Bianca, maar
in het bijzonder mijn eigen broer en zus, Michel en Esther, wil ik hartelijk
bedanken voor hun interesse, steun en vele goede hints.

Het laatste bedankje gaat natuurlijk richting de belangrijkste mensen in
mijn leven: mijn eigen gezinnetje. Lisanne, Kevin en Nathalie (en zelfs ook
ons volgende kindje, die pas over enkele maanden het daglicht voor het eerst
zal zien), bedankt voor de vele plezierige momenten en de nodige inspiratie
die jullie me hebben bezorgd tijdens mijn promotieperiode. Jullie hebben
mijn leven heel wat meer inhoud en kleur gegeven. Mijn belangrijkste steun
en toeverlaat was en is natuurlijk mijn vrouw Miranda. Zonder haar geduld,
steun en liefde zou ik zeker niet tot zo�n mooi eindresultaat zijn gekomen.
Miranda, bedankt voor alles. Ik hoop dat we nog vele jaren gelukkig kunnen
verder leven met ons gezin.

Mathieu.

Chapter 1

Introduction

A chemical engineer is often asked to describe the dynamic and/or static
behaviour of a physical-chemical-biological (PCB) process (or a set of these
processes, which constitute a plant), because information about this behaviour
is needed for operations like analysis, control, design, simulation, optimisation
or process operation. In order to analyse the behaviour of such a process,
the engineer often needs a mathematical representation of the physical and
chemical and/or biological phenomena taking place in it.

The representation of a PCB process in form of a mathematical model is the
key to many chemical engineering problems (e.g. (Cellier 1991) (Marquardt
1994a)(Ogunnaike 1994)(Hangos and Cameron 2001)). Modelling a chemical
process requires the use of all the basic principles of chemical engineering sci-
ence, such as thermodynamics, kinetics, transport phenomena, etc. It should
therefore be approached with care and thoughtfulness (Stephanopoulos 1984).

1.1 Motivation and Goals

A (mathematical) model of a process is usually a system of mathematical equa-
tions, whose solutions reßect certain quantitative aspects (dynamic or static
behaviour) of the process to be modelled (Aris 1978) (Denn 1986)(Ogunnaike
1994). The development of such a mathematical process model is initiated
by mapping a process into a mathematical object. The main objective of a
mathematical model is to describe some behavioural aspects of the process
under investigation.

The modelling activity should not be considered separately but as an in-
tegrated part of a problem solving activity. Preisig (Preisig 1991b), (Preisig
1991a) analysed and decomposed the overall task of problem solving into the
following set of subtasks:

� (Primary) Modelling. The Þrst step in the process of obtaining a

1

2 Introduction

process model is the mapping of the �real-world� into a mathematical
object, called the primary model. In doing so, one may take different
views and accordingly apply different theories, which naturally will result
in different models. Within this Þrst step, assumptions are made about
the principle nature of the process (such as time scales of hydraulics and
reactions, fundamental states, etc.).

� Model manipulation. The model can be simpliÞed by applying math-
ematical manipulations, such as:

� Model reduction

� Linearisation

� Transformation to alternative representations of the model

� re-arrangement of the mathematical problem equations

� Problem speciÞcation. Certain variables are instantiated (i.e. de-
Þned as known), such that they are available later during solution time
and such that the number of equations equals the number of unknown
variables.

� Analysis of the mathematical model. The analysis of the math-
ematical problem is done in connection with the speciÞcation of the
model. On the simple level, a degree of freedom analysis may be done,
which for large scale systems is by no means trivial. On the higher level,
one may look into things as index of the differential algebraic system.

� Solution of the mathematical model. General purpose mathemat-
ical packages, such as differential algebraic equation solvers, large scale
simulators, linear algebra packages, etc., are used to solve particular
problems.

� Analysis of the results. The analysis of the results must focus on
a veriÞcation of the results by comparing them with known pieces of
information. This may be experimental data or just experience.

The outcome of the performance of each task must fulÞl a set of speci-
Þcations and requirements, otherwise the design is iterated by looping back
to any previous task. This implies that modelling is a recursive and iterative
process (and that includes not only the modelling, but everything that is asso-
ciated with the use of the model). Rarely does one in the Þrst attempt obtain
a proper model for the problem under investigation. Usually, an adequate
model is constructed progressively through a loop comprising a series of tasks
of model development and model validation.

1.1 Motivation and Goals 3

More often than not, the time spent on collecting the information neces-
sary to properly deÞne an adequate model is much greater than the time spent
by a simulator program in Þnding a solution. Most publications and textbooks
present the model equations without a description of how the model equations
have been developed. Hence, to learn dynamic model development, novice
modellers must study examples in textbooks, the work of more skilled mod-
ellers, or use trial and error (Moe 1995).

During the last decades there tends to be an increasing demand for mod-
els of higher complexity, which makes the model construction even more
time consuming and error-prone (MacKenzie and Ponton 1991)(Marquardt
1991)(Marquardt 1992). Moreover, there are many different ways to model
a process (mostly depending on the application for which the model is to be
used): different time scales, different levels of detail, different assumptions,
different interpretations of (different parts of) the process, etc. Thus a vast
number of different models can be generated for the same process. All this
calls for a systematisation of the modelling process, comprising of an appro-
priate, well-structured modelling methodology for the efficient development
of adequate, sound and consistent process models. Modelling tools building
on such a systematic approach support teamwork, re-use of models, provide
complete and consistent documentation and, not at least, improve process un-
derstanding and provide a foundation for the education of process technology
(Bieszczad 2000)(Moe 1995)(Preisig et al. 1991).

This work presents the concepts and design ofModeller, a computer-aided
modelling tool built on a structured modelling methodology, which aims to
effectively assist in the development of process models and helps and directs
a modeller through the different steps of this methodology. It was not a
project objective to introduce new elements or a new modelling language.
The objective of this project is to provide a systematic model design method
that meets all the mentioned requirements and turns the art of modelling into
the science of model design.

The focus of this work is primarily on modelling and not on problem
solving. Most of the currently available modelling languages and simulation
packages focus on model manipulation, speciÞcation, analysis and/or solu-
tion and more or less leave out the modelling part. In general it is assumed
that the mathematical model of the process under investigation is known or
easy to assemble. The development of process models, however, is slow, er-
ror prone and consequently a costly operation in terms of time and money
(Sargent 1983)(Asbjørnsen et al. 1989)(Marquardt 1992).

Modelling is an acquired skill, and the average user Þnds it a difficult task
(Sargent 1989)(Evans 1990). A modeller may inadvertently incorporate mod-
elling errors during the mathematical formulation of a physical phenomenon.

4 Introduction

Formulation errors, algebraic manipulation errors, writing and typographical
errors are very common when a model is being implemented in a computing
environment. Thus any procedure which would allow to do some of the needed
modelling operations automatically would eliminate a lot of simple, low-level
(and hard to detect) errors (Preisig 1991c).

Modeller is a computer-aided modelling tool which is designed to assist
a model designer to map a process into a mathematical model, using a sys-
tematic modelling methodology. The task solved by Modeller is purely the
construction and manipulation of the structure and deÞnition of process mod-
els. The tool is not designed to solve speciÞc problems concerning any model,
as such programs (Modelica, gProms, ASCEND, Dymola, SpeedUp, DASSL,
DASOLV, DAEPACK, etc.) are already available. The sole task of Modeller
is to provide an interface allowing to construct and edit symbolic process mod-
els. The output of Modeller is a Þrst-principles based (i.e. based on physical
insight (Asbjørnsen et al. 1989)) mathematical model with a minimal reali-
sation, which is easily transformed to serve as an input to existing modelling
languages and/or simulation packages, such as gProms, ABACUSS, ASCEND,
Modelica, Matlab.

1.2 Application Dependency of Models

This work is concerned with the mathematical modelling of macroscopic phys-
ical and/or chemical processes as they appear in general in chemical or bio-
logical plants. A mathematical model of a process usually consists of a set of
equations, which describe the dynamic and/or static behaviour of this process.
There are many ways to generate these equations and there are many different
ways to describe the same process, which will usually result in different mod-
els. The approach a modeller takes when constructing a model for a process
depends on:

� the application for which the model is to be used. Different models are
used for different purposes. For example, a model which is used for the
control of a process shall be different from a model which is used for the
design or analysis of that same process;

� the amount of accuracy that has to be employed. This is of course par-
tially depending on the application of the model and on the time-scale in
which the process has to be modelled. In general, a model which needs
to describe a process on a small time-scale demands more details and
accuracy then the model of the same process which describes the process
over a larger time-scale;

1.3 Structured Modelling Methodology 5

� the view and knowledge of the modeller on the process. Different people
have different backgrounds and different knowledge and will therefore
often approach the same problem in different ways, which can eventually
lead to different models of the same process.

1.3 Structured Modelling Methodology

A modelling methodology can be deÞned as an algorithmic procedure intended
to lead from speciÞc knowledge of physical and topological nature of a pro-
cess to a mathematical model of that process (Weiss 2000). The modelling
methodology we use (Preisig 1994b) is based on the hierarchical decomposi-
tion of processes into networks of elementary systems and physical connec-
tions. Elementary systems are regarded as thermodynamic simple systems
and represent (lumped) capacities able to store extensive quantities (such as
component mass, energy and momentum). The connections have no capacity
and represent the transfer of extensive quantities between these systems1. The
construction of a process model with our methodology consists of the following
steps:

1. Break the process down into elementary systems that exchange extensive
quantities through physical connections. The resulting network repre-
sents the physical topology.

2. Describe the distribution of all involved chemical and/or biological species
as well as all reactions in the various parts of the process. This represents
the species topology.

3. For each elementary system and each fundamental extensive quantity
(the collection of which is the fundamental state) that characterises the
system write the corresponding balance equation. The result has the
following form:

d

dt
x= Az+Br

In this (simpliÞed!) form, the balance equations run over all the funda-
mental extensive quantities (x) of all deÞned systems, over all the de-
Þned connections (z) and over all the deÞned reactions (r) of the physical
topology. The matrices A and B are completely deÞned by the model
designers deÞnition of the physical and species topology of the process.

1A similar basic classiÞcation, splitting up the process in devices and connections, was
develloped by Marquardt (e.g.: (Marquardt 1994b)).

6 Introduction

4. Add algebraic equations to the model deÞnition:

� Augment the model equations with deÞnitions and equations of
state:

y
Σ
= f(xΣ)

For each system in the physical topology a mapping must exist,
which maps the primary state (i.e. the fundamental state xΣ) into
a secondary state (yΣ).

� Choose the transfer laws and kinetic laws that express the ßow and
production rates (present in the balance equations). Also deÞne
possible constraining assumptions (i.e. �simpliÞcations� that may
lead to high-index DAEs (Westerweele and Preisig 2000), (Moe
1995)), such as order of magnitude assumptions.

Transfer laws: zc = g1(yor,ytar) or 0= g2(yor,ytar)

Production laws: ri,Σ = h1(yΣ) or 0 = h2(yΣ)

For each connection either the transfer law must be given, which
deÞnes the ßow (zc) through the connection (usually as a function
of secondary state variables of the two interconnected systems), or
a constraint must be given. For each reaction either the produc-
tion law must be given, which deÞnes the reaction rate (ri,Σ) of
the reaction (usually as a function of secondary state variables of
the system the reaction takes place in), or a constraint must be
given. When a constraint is given for a connection or a reaction,
two or more fundamental state variables are linked together, either
directly or indirectly. This means that not all state variables are
independent and that some kind of index reduction method shall
have to be applied. A detailed discussion on the problems and their
solutions, when introducing assumptions, is given in chapter 6.

5. Add the dynamic behaviour of the information processing units, such as
controllers.

These steps for building a model do not have to be done strictly in this
sequence - at least not for the overall model. It is left to the model designer
when the details are being speciÞed in each part of the model.

This Þve step procedure of building dynamic process models always results
in a differential algebraic system with an index of one. The model can be
used for solving certain problems related to the process or it can be further
modiÞed by applying mathematical manipulations, such as linearisation or
model reduction.

1.4 Overview of Related Work 7

1.4 Overview of Related Work

This section gives a summary on several existing software packages and com-
puter languages for dynamic process modelling. It is not the idea of this
section to give a thorough review of all the different packages and languages
that have been developed over the last few decades, but rather to give an idea
on what kind of different types of tools have been developed.

There exist many software tools that are designed to facilitate certain
aspects of the modelling process. Most of these tools are designed to solve
sets of mathematical equations, which do not necessarily have to be related to
a physical process. For dynamic process modelling these tools can be divided
into three groups:

� General purpose mathematical solvers: These are very general
mathematical problem solvers that are not especially designed to solve
speciÞc problems that are related to physical processes. These envi-
ronments accept many kinds of mathematical problems. When used
for modelling, a model designer must deÞne all variables and equations
that are of interest himself and also has to be very aware of the correct
computational causality of the entered equations. It may cost a model
designer a lot of work (doing substitutions, transformations and other
manipulations) to generat a code that is solvable. The solvers can make
no statements about the physical feasibility of the problem. A modeller
should therefore have a good background in the subject and have an
ability to translate the physical phenomena and structure of a process
into a mathematical notation (Himmelblau and Bischoff 1968).

Examples of general purpose mathematical solvers (involving symbolic
and numerical tools) are: Matlab (MATLAB user�s guide 1992), Maple
(Blachman and Mossinghoff 1998), Mathematica (Wolfram 1991).

Examples of more speciÞc differential algebraic system solvers are: DASSL
(Petzold 1983), LSODI (Hindmarsh 1983).

� Generic physical process modelling languages: These languages
support a structured and declarative representation of process models.
They may be viewed more as passive data structures representing struc-
tured sets of model equations rather than as modelling knowledge com-
prising data and inference methods. Hence, by construction, modelling
languages do not provide guidance for the modeller (Marquardt 1994b).

Implementations of these languages can be used for modelling of large,
complex and heterogeneous physical systems. They are, in general,
suited for multi-domain modelling, for example, physical process oriented
applications, applications involving mechanical, electrical, hydraulic, and

8 Introduction

control subsystems, robotics, automotive and aerospace applications,
etc. The tools allow the modeller to declare (very) large systems of
(differential, algebraic and discrete) equations in symbolic form, which,
in general, do not have to be prepared manually in order to Þt the solver.
The computer takes primary responsibility for selecting and implement-
ing the appropriate symbolic and numerical methods to determine the
results. Some of the implementations (e.g. ABACUSS II and Dymola)
are even capable of integrating systems with high-index differential and
algebraic equations.

By automatically determining the solution to the user-speciÞed equa-
tions, these tools are a signiÞcant aid to equation-oriented modelling.
They signiÞcantly reduce the amount of coding needed to develop new
models or modify existing ones and are capable of solving very large
systems of equations. However, the solution capabilities cannot be fully
exploited unless the correct, consistent generation and maintanance of
these complex sets of equations can be ensured (Bieszczad 2000). The
mathematical modelling tools cannot provide assistence on modelling
itself because they focus on equation solving methods and are not ex-
plicitly linked to physical concepts.

Bieszczad rightfully wrote: �Furthermore, although the symbolic form
of the equations facilitates reuse, their applicability may be uncertain
because assumptions used in deriving these equations are not explicitly
maintained. Thus, it is the responsibility of the modeler to provide com-
ments explaining assumptions used as the basis of model equations, to
analyse the consistency and logic of these assumptions, and to correctly
derive the equations. These tasks are neither assisted nor enforced by
any of the equation-based modelling tools. This can especially lead to
difficulty in model editing and analysis. For example, to avoid redundant
modeling it would be ideal if one continuously evolving model could be
used over the lifetime of a project. Over time, such a model may grow
to hundreds or thousands of equations while modiÞcations are made by
several different modelers. However, whenever an assumption is changed
or added, the modeller must analyse the set of existing model equations
(which may or may not be consistently commented), determine the mod-
iÞcations necessary throughout the system of equations, then implement
and document these changes. As a result, this task may quickly become
unwieldy as a model grows in complexity.� (Bieszczad 2000)

Examples of modelling languages and their implementations are: Dy-
mola (Modelica) (Mod 2000)(Elmqvist andMattsson 1997), Omola, gProms
(Barton 1992)(Barton and Pantelides 1993), ABACUSS II (Freehery
and Barton 1996), ASCEND (Piela 1989)(Piela and Westerberg 1993),

1.5 Scope of this Project 9

YAHSMT (Thevenon and Flaus 2000), SimGen (Dormoy and Furic 2000),
SpeedUp (now distributed by AspenTech) (Pantalides 1998), Chi (Fábián
1999).

� Automated model derivation programs for physical/chemical
processes:

The basic idea of these programs is to build equations from Þrst prin-
ciples (i.e. physical insight). In general terms, these programs have the
same goal as The Modeller and are closely related to this work: (par-
tially) automating and thereby speeding up the construction of dynamic
process models for physical/chemical processes. A few general com-
ments on observations, differences and shortcomings of the other tools
and projects that I have read about are in order:

� They all have some kind of automatic balance equation generation,
but a clear link to the algebraic equations that also need to be
present in order to fully describe the process is not made.

� It is only allowed to construct �true� index-1 dynamic models. As-
sumptions that lead to higher index process models are not sup-
ported.

� It is, in general, not clear what kind of assumptions a modeller can
make and what the implications of the assumptions are.

� Steady-state assumptions on parts of the dynamic model can clear
up certain modelling difficulties. Such assumptions cannot be made
by the existing modelling programs.

� Mostly, the aim of the projects was to build an automated model
derivation program (which was, in general, not limited to building
only dynamic process models). The emphasis was often on the
implementation and therefore the modelling approaches that lay
behind these programs, in general, do not reach a high level of
abstraction (vector and matrix algebra are almost never used, but
can certainly make modelling algorithms more transparent). This
often makes the implementation (and the discussion) more complex.

Examples of automated model derivation programs are: Model.la (Bieszczad
2000), ModDev (Jensen 1998), ModKit (Lohmann 1998), PROFIT (Telnes
1992), KBMoSS (Vázquez-Román et al. 1996).

1.5 Scope of this Project

The scope of this work is limited to dynamic process models for physical,
chemical and/or biological processes that are based on physical insight. The

10 Introduction

processes are interpreted networks of interconnected lumped systems. Dis-
tributed parameter systems are not considered, since this type of systems can
be approximated by a large number of interconnected lumped systems2.

This work concerns models for physical, chemical and/or biological pro-
cesses and since for such processes momentum and electric current are usually
of minor importance, this work is concentrated on mass and energy. The dis-
cussed framework is, though, of a more general nature, such that the now
existing program can readily be extended to accomodate any other fundamen-
tal extensive quantity, such as momentum and electrical charge.

In my opinion, the majority of dynamic models is build for the purpose of
solving initial value problems (i.e. simulations) and only a small part for other
purposes, such as dynamic design, optimal control and parameter estimation.
Although models, as derived with our methodology can, in principle, be used
for any purpose (simulation, design, optimal control, parameter estimation),
the main emphasis of this work is on the construction of models (consisting
of differential algebraic equations) that are suitable for the solution of initial
value problems.

In short, the main questions that I try to answer in this thesis are the
following:

1. Can I �prove� that modelling of dynamic processes is more of a science
than an art, such that it can be used by a much larger group of engineers
than is the case today? I.e. is there more structure in the modelling
process than is generally thought?

2. Is it possible to (seriously) speed up the whole modelling process?

3. To what extent can the modelling process be captured in a computer
program and under which conditions?

1.6 Outline and Intention of the Thesis

This thesis describes a systematic modelling approach for the development
of Þrst principles based, dynamic process models for macroscopic chemical,
physical and/or biological processes. It thesis consists of three main parts.

The Þrst part, Modelling Methodology, describes the systematic mod-
elling approach that was partially developed during my research period. In

2This is just one way of approximating distributed systems. There are also other ways,
but these fall beyond the scope of this thesis.

1.6 Outline and Intention of the Thesis 11

chapter 3 the basic building blocks for constructing physical topologies are in-
troduced and an explanation on how to construct physical topologies is given.
Chapter 4 introduces the so-called species topology and some species related
concepts such as permeability, directionality and reactions. In chapter 5 the
information of the physical and species topologies is combined to generate the
balances of relevant fundamental extensive quantities. Also, the algebraic re-
lations a model designer has to supply, in order to complete the model, are
discussed. The last chapter of the Þrst part, chapter 6, discusses the implica-
tions of introducing order of magnitude assumptions into the model and gives
some solutions to the thereby imposed problems.

The second part, Implementation, runs parallel to the Þrst part and
discusses the implementation of the topologies into the computertool the
Modeller. Chapter 8 describes the construction and manipulation of physical
topologies. Chapter 9 discusses the construction and manipulation of species
topologies. The implementation and handling of equations and variables is
discussed in chapter 10.

In the last part, Examples and Conclusion, a number of examples are
worked out with the intention to show the reader that Þrst principle modelling
does not have to be difficult - something that is generally assumed - but can
actually be fairly simple if our structural approach is used. The Þnal chapter,
chapter 12, contains the main conclusions, summarises the main contributions,
and gives some suggestions for further research.

The context of this project is modelling of physical/chemical/biological
processes, including any type of production facility (chemicals, food, biotech)
and natural process. The project aimes at systematising modelling of the
above mentioned type of processes with the objective to implement the result-
ing methodologies into a computing environment. This will primarily increase
the efficiency of model building, maintenance and model derivations.

The concepts presented in this thesis are applicable to a large group of
�modellers�. Therefore, an important personal goal was to make this thesis
as �readable� as possible, such that a large percentage of the people who read
this book can actually understand the presented material and even apply it,
if necessary. This means that I have tried to explain all the concepts in plain
English, giving simple supporting examples and minimising the needed math-
ematics and formalisms. A basic understanding of differential mathematics
and vector and matrix algebra is required though.

12 Introduction

Part I

Modelling Methodology

13

Chapter 2

Introduction to Modelling

Process systems engineering spans the range between process design, opera-
tions and control. Whilst experiments are essential, modelling is one of the
most important activities in process engineering, since it provides insight into
the behaviour of the process(es) being studied. Modelling is a complex ac-
tivity, as the information of appropriate and consistent models requires help
from experts and often results in a knowledge-intensive, time consuming and
error-prone task (Vázquez-Román et al. 1996)1.

2.1 Three Principal Problems

The Þrst step in identifying the various characteristic steps of process systems
engineering problem solving is to identify a minimal set of generic problems
that are being solved. Most problems in this area have three major compo-
nents, which are :

� Model :: A realisation of the modelled system simulating the behaviour
of the modelled system.

� Data :: Instantiated variables of the model. May be parameters that
were deÞned or time records of input or output data obtained from an
actual plant, marketing data etc.

� Criterion :: An objective function that provides a measure and which,
for example, is optimised giving meaning to the term best in a set of
choices.

1The material presented in this chapter was partially taken from an internal report
(Preisig 1994a).

15

16 Introduction to Modelling

The particular nature of the problem then depends on which of these com-
ponents is known and which is to be identiÞed. Each type of problem is asso-
ciated with a name which changes from discipline to discipline. The choice of
the names listed below was motivated by the relative spread of the respective
term in the communities. The following principle problems are deÞned (Figure
2.1):

Figure 2.1: The three base problems.

� Simulation: Given model, given input data and given parameters Þnd
the output of the process.

� IdentiÞcation: Given model structure, some times several structures,
given process input and output data, and a given criterion, Þnd the best
structure and the parameters for the parameterised model, where �best�
is measured with the criterion.

� Optimal Control: Given a plant model, a criterion associated with
process input and process output, and the process characteristics, Þnd
the best input subject to the criterion.

The deÞnition of simulation is straightforward. The task of identiÞca-
tion though is not, in that it includes Þnding structure as well as parameters
of a model. This in turn implies that many tasks match this description, such
as process design and synthesis, controller design and synthesis, parameter
identiÞcation, system identiÞcation, controller tuning and others Þt this def-
inition. The deÞnition of the optimal control task is also wider than one
usually would project. Namely process scheduling and planning are part of
this deÞnition as well as the design of a shut-down sequence in a sequential
control problem, to mention a few non-traditional members of this class.

In all three classes a model is involved. In this discussion parameterised
input/output mapping are used because they are usually the type of model
capturing the behaviour of a given system in the most condensed form. Though
in each case it is solved for a different set of its components. In the case of the
simulation, the outputs are being computed, in the case of the identiÞcation
task, the best parameters are found and in the case of optimal control, the
best input record is being determined.

2.2 The Modelling Process 17

In order to solve a problem, the model must be supplemented with a set
of deÞnitions, which, in combination with the model, deÞne a mathematical
problem that can be solved by a particular mathematical method. These deÞ-
nitions are instantiations of variables that assign known quantities to variables
or functions of know quantities, where the functions may be arbitrarily nested.

On this highest level, process engineering problem solving has four principle
components :

1. Formulation of a model;

2. Problem speciÞcation;

3. Problem solution method;

4. Problem analysis.

The following sections discuss the problem of the model formulation in
more details.

2.2 The Modelling Process

Models take a central position in all process engineering tasks as they replace
the process for the analysis. They represent an abstraction of the process,
though not a complete reproduction. Models make it possible to study the
behaviour of a process within the domain of common characteristics of the
model and the modelled process without affecting the original process. It is
thus the common part, the homomorphism or the analogy between the pro-
cess and model and sometimes also the homomorphism between the different
relations (== theories) mapping the process into different models that are
of interest. The mapping of the process into a model does not only depend
on the chosen theory, but also on the conditions under which the process is
being viewed. The mapped characteristics vary thus not only with the applied
theory but also with the conditions.

Different tasks focus on different characteristics and require different levels
of information about these characteristics. For example control would usually
be achievable with very simple dynamic models, whilst the design of a reac-
tor often requires very detailed information about this particular part of the
process (Aris 1978). The result is not a single, all-encompassing model but
a whole family of models. In fact, there is no such thing as a unique and
complete model, certainly not from the philosophical point of view nor from
a practical, as it simply reßects the unavoidable inability to accumulate com-
plete knowledge about the complex behaviour of a real-world system. More
practically and pragmatically a process is viewed as the representation of the

18 Introduction to Modelling

essential aspects of a system, namely as an object, which represents the pro-
cess in a form useable for the deÞned task. Caution is advised, though, as
the term essential is subjective and may vary a great deal with people and
application.

The term multi-faceted modelling has been coined reßecting the fact
that one deals in general with a whole family of models rather than with a
single model (Zeigler 1984). Whilst certainly the above motivation is mainly
responsible for the multi-faceted approach, solution methods also have use for
a family of models as they can beneÞt from increasing the level of details in
the model as the solution converges.

An integrated environment must support multi-faceted modelling, that is
mapping of the process into various process models, each reßecting differ-
ent characteristics or the same characteristics though with different degree of
sophistication and consequent information contents. In order to identify com-
ponents of the suggested environment, the process of deriving process models
is the subject of the next section.

2.3 Formulation of the Model

Establishing a model, as it is used in a particular application, involves a num-
ber of operations, which can be broken down into a number of principle steps.
Analysing the operations on each individual step then reveals the communali-
ties and differences. The object being mapped is referred to as the plant which
is here used as a synonym for physical-chemical-biological system, an entity
which transforms matter by the means of a chemical or biological process in
a physical environment.

Alternative models can be generated in one of two ways. The Þrst ap-
proach is to use different theories to map the plant into a mathematical object
thus obtain different mathematical models using different theories. The sec-
ond possibility is to manipulate one of the models deriving new models.
Again, an integrated environment should allow for both mechanisms.

Any manipulation will in general reduce, or at the best maintain, the
information contents of the model with respect to structural complexity. The
manipulation can only result in transformed models or simpliÞed models.

2.3.1 Primary Modelling Operation

The very Þrst step in the process of obtaining a model is the mapping of the
real-world prototype, the plant, into a mathematical object, here called the
primary model. This process is non-trivial because it involves structuring of
the process into components and the application of a mapping theory for each
component. Since the theories are context dependent, the structuring is tightly

2.3 Formulation of the Model 19

coupled to the theory chosen. The process of breaking the plant down to basic
thermodynamic systems determines largely the level of details included in the
model. It is consequently also one of the main factors for determining the
accuracy of the description the model provides.

Chapter 3 gives an idea on how a process can be broken down into smaller
parts using only two basic building blocks, namely systems and connections.
The resulting interconnected network of capacities is called the physical topol-
ogy.

In chapter 4 the so-called species topology is introduced. This species
topology is superimposed on the physical topology and deÞnes which species
and what reactions are present in each part of the physical topology.

Structuring is one factor determining the complexity of the model. An-
other factor comes to play when choosing descriptions for the various mech-
anisms such as extensive quantity transfer and conversion. For example in a
distributed system, mass exchange with an adjacent phase may be modelled
using a boundary layer theory or alternatively a surface renewal theory, to
mention just two of many alternatives. The person modelling the process thus
will have to make a choice. Since different theories result in different mod-
els, this implies making a choice between different models for the particular
component. Structuring and use of theories will always imply intrinsic sim-
plifying assumptions. For example modelling a heat transfer stream between
the contents of the jacket and the contents of a stirred tank may be modelled
using an overall heat transfer model, that is a pseudo-steady state assump-
tion about the separating wall and the thermal transfer resistant of the ßuids
is made. Though, if one is interested in the dynamics of the wall, a simple
lumping of the wall improves the description or if this is still not sufficient one
may choose to describe the heat transfer using a series of distributed coupled
system or a series of coupled lumped systems.

Assuming for the moment that the structuring is not causing any problems
and assuming that a theory or theories are available for each of the compo-
nents, the mapping into a mathematical object associated with a chosen view
and an associated theory is formal.

The presumption is made that no other intrinsic assumptions are being
made at this point, that is, the theory is applied in its purest form. SpeciÞcally,
the conservation principles, which describe the basic behaviour of plants, are
applied in their most basic form. Particularly the energy balance is formulated
in terms of total energy and not in any derived state functions.

Chapter 5 discusses the mathematical description of process models (the
equation topology) and deals with the last three steps of the modelling method
(outlined in the Þrst chapter of this thesis), since all of these steps involve
equations. This chapter is devoted to �proper model building�, so assumptions
that implicate modelling difficulties are kept clear of.

20 Introduction to Modelling

2.3.2 Assumptions about the Nature of the Process

Once a mathematical model for the process components has been established,
usually the next operation is to implement a set of assumptions which eliminate
complete terms or parts thereof in the equations of the primary model. These
are assumptions about the principle nature of the process such as no reaction,
no net kinetic or potential energy gain or loss, no accumulation of kinetic or
potential energy. Whilst not complete, this is a very typical set of assumptions
applied on this level in the modelling process. The assumptions are of the
form of deÞnitions, that is variables, representing the terms to be simpliÞed
are instantiated. For example, the production term in the component mass
balances might be set to zero.

Additional assumptions that simplify the process model may be introduced
at any point in time. A very common simpliÞcation is the introduction of a
pseudo-steady state assumption for a part of the process which essentially
zeroes out accumulation terms and transmutes a differential equation into
algebraic relation between variables. These can then be used to simplify the
model by substitution and algebraic manipulation.

The Þnal chapter of this part, chapter 6, discusses which alterations have to
be made to the equation topology when certain assumptions are being made.

Chapter 3

Hierarchical Organisation:
The Physical Topology

In order to get a mathematical description of a process, a modeller usually has
to break the process down into smaller parts for convenience reasons. A pro-
cess is thus assumed to consist of a set of subprocesses. These subprocesses
may in turn be divided into smaller processes, and so on, until the process
consists of a number of subprocesses, which each are small enough to be han-
dled individually. In the modelling method that we employ this means that
a process is divided into a network of interconnected volume elements. Each
volume element of such a network consists of a single phase that is uniformly
distributed and hence displays uniform properties over its volume. The net-
work of volume elements describes, so-to-speak, the physical structure of the
process and shall be referred to as the physical topology of that process.

The physical topology contains, once established, the maximum of informa-
tion about the dynamic phenomena captured in the model. Any modiÞcation
on the topology changes the dynamic information contents.

3.1 Building Blocks

The physical topology is built from only two principle components, namely
systems and connections. The systems (volume elements) represent capacitive
elements able to store extensive quantities (such as mass, energy and momen-
tum) and are therefore associated with mass. The connections describe the
exchange of extensive quantities between two such capacities. Hence, systems
and connections appear in an alternating sequence in a process representation.

As mentioned before, a process can be decomposed into a set of interac-
tive thermodynamic systems based on classical axiomatic thermodynamics.

21

22 Hierarchical Organisation: The Physical Topology

A thermodynamic system is deÞned (Tisza 1961) as a Þnite region in space
speciÞed by a set of physically quantiÞable variables. Such a system consists
of a phase. The systems concept, though, does not require uniform conditions
within this phase. So, in order to deÞne a consistent and generic primitive
modelling component - for the sake of basic and fundamental modelling - we
have to slightly adjust this deÞnition.

One can distinguish between two �types� of systems. The Þrst are lumped
systems, which have a homogeneous or uniform phase and consequently have
uniform intensive properties (such as concentration, temperature and density).
The others are distributed systems, which do not exhibit uniform conditions
across their phase: the intensive properties are gradually changing with the
deÞned spatial coordinates. These two types can be mapped into one by
deÞning only one primitive simple system that may be of Þnite or differentially
small volume. This results in the following deÞnition:

Definition 3.1.1 A simple system (Σ) is a body of Þnite or differentially
small volume consisting of a single phase or a pseudo-phase

This deÞnition implies that a capacity of any nature is present in the sys-
tem and that the state of the system is uniform within the spatial domain
it occupies. In the deÞnition the system is called a simple system because it
relates to a single uniform phase or a pseudo-phase within the system. The
phase concept is hereby extended by allowing for a pseudo-phase. This is done
in order to support the granularity concept. A pseudo-phase is a spatial do-
main with spatially averaged properties and is associated with the granularity
of the model. On a Þner scale, the phase concept applies usually well, but
as one increases the granularity, i.e. larger spatial domains are represented as
systems, the systems spatial domain may not exhibit uniform physical prop-
erties any more. However, for the purpose of the model, one may still want
to view this domain as a uniform system. For this reason the pseudo-phase
concept is introduced.

A system represents a capacity and is separated from its neigbouring sys-
tems by means of an imaginary wall of no mass and therefore of no capacity.
This boundary, which encapsulates the total mass of the system, is a theoreti-
cal artifact. Although these boundaries often replace physical walls in a model,
they are certainly not the same. Mapping a physical wall into a boundary of a
thermodynamic system implies that the capacity effect of the wall is neglected
and that it is mapped into an abstract thermodynamic wall. If one wishes to
model a wall as a capacitive component, this wall should be represented as a
system, and thus be associated with a capacity.

Systems are interacting through their common boundaries. Classical ther-

3.1 Building Blocks 23

modynamics deÞnes three classes of systems based on the nature of these
interactions, namely isolated, closed and open systems. A thermodynamically
isolated system has no interaction with its environment. The interaction of
a closed system with its environment is limited to the transfer of heat only,
without any exchange of matter. A thermodynamically open system can inter-
act with its environment through its boundary transferring both energy and
mass.

The interactions between systems are represented by the second type of
building block used to construct the physical topology, namely the connections.
A connection represents an interaction between two capacitive elements c.q.
systems. It describes the exchange of extensive quantities across the boundary
separating two adjacent systems. Therefore, a connection cannot exist in
isolation. In other words, a connection cannot be established prior to the
deÞnition of two distinct systems as origin and target of the connection. The
implication of this paradigm is that all plant models are closed. No open
ends exist. Any source of material, energy, or any extensive quantity for that
matter must be modelled and the same applies for any sink.

A connection represents a common boundary segment of the connected
systems. An arbitrary number of connections may exist between two systems
through any of the common boundary elements. The connections, at this
stage, do not specify yet the speciÞc details on how and how much is being
communicated through them, only the nature of the connections is deÞned.
They can either be mass, heat or work connections.

Definition 3.1.2 A connection is a directed communication path for the ex-
change of a speciÞc extensive quantity between two systems through a boundary
element, separating the two systems

The deÞnition given above implies that connections are directed. This
means that the ßow of the extensive quantity through the connection is mea-
sured relative to a reference co-ordinate system. This co-ordinate system is
deÞned by the origin and the target of the connection (this is graphically
depicted as an arrow with a head and a tail).

The actual ßow is caused by a difference in the states of the two systems,
such as heat ßow by a difference in the temperature and convective ßow by a
difference in the pressure. By convention, the sign of the ßow is considered to
be positive when the transferred quantity ßows from the origin to the target.

Example 3.1: A General Process.

Figure 3.1a represents a general open process, embedded in its en-
vironment. The process divided into 3 parts, each of which can

24 Hierarchical Organisation: The Physical Topology

Figure 3.1: a. A general open process and its interaction with its environment,
b. Possible physical topology of this process.

be modelled as simple thermodynamic systems. Each arrow in
this drawing represents the transfer of a speciÞc extensive quan-
tity across the boundary of two adjacent systems. The process can
be modelled as a closed process if the environment is considered as
a simple system. The interactions between the systems and the en-
vironment can then be modelled in the same way as the interactions
between the individual systems.

Figure 3.1b shows a physical topology of the process. As you can
see, the physical topology is built from (lumped) capacities, shown
as circles, and directed connections, shown as arrows. Each con-
nection has an origin and a target system. The origin and the
target deÞne the reference co-ordinate system for the direction of
the ßow of extensive quantity between them. So, if the transferred
quantity ßows from the target to the origin, this will correspond to
a negative ßow from the origin to the target.

¤

Example 3.2 shows a possible division of a process into smaller parts, which
results in a possible physical topology of that process. The physical topology
consists only of systems and connections between those systems.

Example 3.2: A Possible Physical Topology

Figure 3.2a shows a schematic representation of a reactor that
could be part of a larger plant. The reactor is divided in four parts
by three partitions and the contents of the reactor is heated via the
surface of the reactor. The actual contents of the reactor and the
reaction(s) taking place in it are of no concern at this Þrst stage

3.1 Building Blocks 25

Figure 3.2: a. Schematic representation of an example reactor, b. Possible
physical topology for this reactor.

of the model construction. Presently, only a physical topology for
this reactor shall be constructed. This topology will form the ba-
sis for the rest of the modelling process. A possible division of
the reactor into simple systems is shown in Þgure 3.2b. The cir-
cles and the square represent capacitive volume elements (simple
lumped systems), the arrows represent paths for the exchange of
extensive quantities (connections).

The reactants are fed into the reactor at the top end, represented
by the Þrst lump. A source element was introduced here in order to
model the inßow. It is important to realise that if the reactor would
be modelled within a larger network, the source might be replaced by
another physical element. The source system has to be introduced
here, because we have to construct closed process models with our
modelling methodology. This means that mass must come from
somewhere; it cannot just appear. Then the ßuid passes from one
lump to another, until it leaves the reactor at the tail end. The
products are collected in a sink system, again because mass cannot
just disappear. The heat that is added to each lump is represented
by a connection from an energy source, which describes the energy
transfer.

Obviously this physical topology would result in a relatively simple
model of the reactor. The model maps the four parts of the reactor
into four individual lumped systems or volume elements. It is im-
plied that within one such volume element the physical conditions
are spatially uniform. Of course, this is but an approximation of
the physical reality. Also, the representation of the heating surface
of the reactor as a simple uniform capacity is an approximation.
With the equations that describe the transfer of mass and energy

26 Hierarchical Organisation: The Physical Topology

and with the mass and energy balances of each system, we can de-
scribe the dynamic and/or static behaviour of the process, provided
that enough additional information is added.

¤

The two examples illustrate how a physical topology of a process can be
constructed with just two building blocks, systems and connections.

3.2 Domains

Connections can be either mass, heat or work connections and therefore a
process model can consist of several domains. In this work a domain has the
following deÞnition:

Definition 3.2.1 A <typed> domain is an interconnected network of ca-
pacities (i.e. primitive systems), in which all connections are of the same type
<type>.

As a rule, single systems, i.e. systems without connections, do not belong
to any speciÞc domain. An exception to this rule is a system, which has a
capacity to store certain species (see chapter 4). Such a system is a (single)
mass domain.

We distinguish 4 types of domains, namely: mass, heat, work and energy
domains. In energy domains all types of connections are considered. A mass
domain can hold several species domains, depending on the presence of those
species in the systems and connections of the mass domain.

Example 3.3: Domains Within a Physical Topology

Figure 3.3: Physical topology of a process consisting of 8 systems, 6 mass
connections and 2 heat connections.

Consider the physical topology shown in Þgure 3.3. This physi-
cal topology consists of 7 systems, 5 mass connections and 2 heat

3.3 Fundamental Time Scale Assumptions 27

connections. There are 2 species present: species A is present in
systems 1, 2, 3, 4, 5 and 6 and ßows through all mass connections.
Species B is present in the systems 1, 2, 3, 4, 5, 6 and 7 and ßows
through the mass connections m1, m3, m4 and m5.

We can identify the following domains:

� 2 Mass domains: (1, 2, 3, 4, 5, 6, m1, m2, m3, m4, m5) and
(7).

� 2 Heat domains: (2, 3, h1) and (5, 7, h2).
� 1 Energy domain: (1, 2, 3, 4, 5, 6, 7, m1, m2, m3, m4, m5,
h1, h2).

� 1 Species domain for species A: (1, 2, 3, 4, 5, 6, m1, m2, m3,
m4, m5).

� 3 Species domains for species B: (1, 2, m1), (3, 4, 5, 6, m3,
m4, m5) and (7).

¤

3.3 Fundamental Time Scale Assumptions

Physical topologies are the abstract representation of the containment of the
process in the physical sense. They visualise the principle dynamic contents of
the process model and therefore the construction of a physical topology is the
most fundamental part of the modelling process. Any changes in the physical
topology will substantially affect the structure and contents of the Þnal model.

The structuring of the process implements the Þrst set of assumptions
in the modelling process. The resulting decomposition is, in general, not
unique. However, the resulting model depends strongly on the choice of the
decomposition. As a rule: the Þner the decomposition, the more complex will
the resulting model be.

The decision of deÞning subsystems is largely based on the phase argu-
ment, where the phase boundary separates two systems. The second decision
criterion utilises the relative size of the capacities and the third argument is
based on the relative velocity with which subsystems exchange extensive quan-
tities. Another argument is the location of activities such as reactions. The
relative size of the model components, measured in ratios of transfer resis-
tance and capacities, termed time constants, is referred to as �granularity�. A
large granularity describes a system cruder, which implies more simply, than a
model with a Þner granular structure. It seems apparent that one usually aims
at a relative uniform granularity, as these systems are best balanced and thus

28 Hierarchical Organisation: The Physical Topology

more conveniently solved by numerical methods. Models of different granu-
larity help in analysing the behaviour of the process in different time scales.
The Þner the granularity, the more the dynamic details and thus the more of
the faster effects are captured in the process description.

Since each model is constructed for a speciÞc goal, a process model should
reßect the physical reality as accurately as needed. The accuracy of a model
intended for numerical simulation, for example, should (in most cases) be
higher than the accuracy of a model intended for control design.

To illustrate the concepts mentioned above, consider the following example
concerning a stirred tank reactor:

Example 3.4: Stirred Tank Reactor

Figure 3.4a shows a stirred tank reactor, which consists of an inlet
and outlet ßow, a mixing element, a heating element and liquid
contents. If the model of this tank is to be used for a rough approx-
imation of the concentration of a speciÞc component in the out-
let ßow or for the liquid-level control of the tank, a simple model
suffices. The easiest way to model this tank is to view it as an
ideally stirred tank reactor (ISTR) as shown in Þgure 3.4b. This
implies that a number of assumptions have been made regarding
the behaviour and properties of the tank. The most important as-
sumption is the assumption that the contents of the tank is ideally
mixed and hence displays uniform conditions over its volume. An-
other assumption can be that heat losses to the environment are
negligible.

Figure 3.4: a. Stirred tank reactor; b. Ideally Stirred Tank Reactor (ISTR).

3.3 Fundamental Time Scale Assumptions 29

After making these and maybe some more assumptions, the mod-
eller can write the total mass balance, component mass balances
and the energy balance of the reactor. With these equations and
some additional information (e.g. kinetics of reaction, physical
properties of the contents, geometrical relations, state variable trans-
formations, etc.) the modeller can describe the dynamic and/or
static behaviour of the reactor.

Figure 3.5: a. Graphical representation of a possible mixing in a tank; b. Pos-
sible decomposition of this process into volume elements for the construction
of a mathematical model.

If the tank has to be described on a much smaller time-scale and/or
the behaviour of the tank has to be described in more detail, then
the ISTR model will not suffice. A more accurate description often
asks for a more detailed model. In order to get a more detailed de-
scription the modeller could, for example, choose to try to describe
the mixing process in the tank (see Þgure 3.5a). Figure 3.5b shows
a possible division of the contents of the tank into smaller parts.
In this drawing a circle represents a volume element which consists
of a phase with uniform conditions. Each volume element can thus
be viewed as an ISTR. The arrows represent the mass ßows from
one volume to another. In order to describe the behaviour of the
whole tank, the balances of the fundamental extensive quantities
(component mass, energy and work usually suffice) must be estab-
lished for each volume element. The set of these equations, supple-
mented with information on the extensive quantity transfer between
the volumes and other additional information, will constitute the

30 Hierarchical Organisation: The Physical Topology

mathematical description of the dynamic and/or static behaviour
of the reactor.

The model of the mixing process could, of course, be further ex-
tended to get a more accurate description1. The number of volume
elements could for example be increased or one could consider back
mixing or �cross� mixing of the liquid between the various volume
elements. The conduction of heat to each volume could also be mod-
elled. One could model a heat ßow from a heating element to each
volume, or only to those volume elements which are presumed to be
the nearest to the heating element, etc. As one may imagine there
are many ways to describe the same process. Each way usually
results in a unique mathematical representation of the behaviour
of the process, depending on the designers view on and knowledge
of the process, on the amount of detail he wishes to employ in the
description of the process and, of course, on the application of the
model.

¤

When employing the term time scale, we use it in the context of splitting
the relative dynamics of a process or a signal (the result of a process) into three
parts, namely a central interval where the process or signal shows a dynamic
behaviour. This dynamic window is on one side guarded by the part of the
process that is too slow to be considered in the dynamic description, thus is
assumed constant. On the other side the dynamic window is attaching to the
sub-processes that occur so fast that they are abstracted as event - they just
occur in an instant. Any process we consider requires these assumptions and
it is the choice of the dynamic window that determines largely the Þdelity of
the model in terms of imaging the process dynamics.

Figure 3.6: The dynamic window in the time scale.

One may argue that one should then simply make the dynamic window as
large as probably possible to avoid any problems, which implies an increase

1In principle, if one increases the complexity of this description, one approaches the
type of models that result from approximating distributed models using computational ßuid
dynamic packages.

3.3 Fundamental Time Scale Assumptions 31

in complexity. Philosophically all parts of the universe are coupled, but the
ultimate model is not achievable. When modelling, a person must thus make
choices and place focal points, both in space as well as in time. The purpose for
which the model is being generated is thus always controlling the generation
of the model (Aris 1978)(Apostel 1960) and the modeller, being the person
establishing the model, is well advised to formulate the purpose for which the
model is generated as explicit as possible.

A window in the time scales must thus be picked with the limits being
zero and inÞnity. On the small time scale one will ultimately enter the zone
where the granularity of matter and energy comes to bear, which limits the
applicability of macroscopic system theory and at the large end, things get
quite quickly infeasible as well, if one extends the scales by order of magni-
tudes. Whilst this may be discouraging, having to make a choice is usually not
really imposing any serious constraints, at least not on the large scale. Mod-
elling the movement of tectonic plates or the material exchange in rocks asks
certainly for a different time scale than modelling an explosion, for example.
There are cases, where one touches the limits of the lower scale, that is, when
the particulate nature of matter becomes apparent. In most cases, however, a
model is used for a range of applications that usually also deÞne the relevant
time-scale window.

The dynamics of the process is excited either by external effects, which in
general are constraint to a particular time-scale window or by internal dynam-
ics resulting from an initial imbalance or internal transposition of extensive
quantity. Again, these dynamics are usually also constraint to a time-scale
window. The maximum dynamic window is thus the extremes of the two
kinds of windows, that is, the external dynamics and the internal dynamics.
A �good� or �balanced� model is in balance with its own time scales and
the time-scale within which its environment operates. In a balanced model,
the scales are adjusted to match the dynamics of the individual parts of the
process model. Balancing starts with analysing the dynamics of the excita-
tions acting on the process and the decision on what aspects of the process
dynamics are of relevance for the conceived application of the model. What
has been deÞned as a system (capacity) before may be converted into a con-
nection later and vice versa as part of the balancing process. This makes it
difficult, not to say impossible, to deÞne systems and connections totally hard.
The situation clearly calls for a compromise, which, in turn, opens the door
for suggesting alternative compromises. There is not a single correct choice
and there is certainly room for arguments but also for confusion. Nevertheless
a decision must be taken. Initially one is tempted to classify systems based
on their unique property of representing capacitive behaviour of volumes, usu-

32 Hierarchical Organisation: The Physical Topology

ally also implying mass. In a second step one may allow for an abstraction
of volumes to surfaces, because in some applications it is convenient to also
abstract the length scale describing accumulation to occur inside, so-to-speak,
or on each side of the surface.

For the sake of modelling, some of the deÞned systems within a physical
topology can be deÞned as �non-dynamical systems�, because the dynamics
of these systems is either outside the dynamic window, or is not of interest
for the model (for example, the source and sink system in example 3.1). The
systems can be divided into six �sub-classes�:

� Lumped

� Distributed

� Source

� Sink

� Steady State

� Composite

In this work we primarily use the lumped systems to describe the dynam-
ics of a process. Distributed systems are systems that do not display strictly
uniform intensive properties (such as temperature, pressure, composition, den-
sity, etc.) within their boundaries. They are a common phenomenon within
the modelling community, but, because of their inÞnite order, one often does
not like to have them in the model. One way to remedy this is to let the
distributed system undergo a model reduction, thereby mapping them from
an inÞnite-order into a Þnite-order system. With this it is accepted that the
higher frequency properties of the process are not appropriately reßected in
the model. The results are models that apply to the intermediate time scale.

Source and sink systems represent resource systems, the dynamics of which
are not of interest for the model. These systems are usually inÞnitely large and
only the intensive properties are deÞned, since the dynamics (which involve
the extensive quantities) of these systems are ignored. Another property of
source and sink systems is that the values of the deÞned intensive properties
can be altered inÞnitely fast.

When the dynamics of a system are very fast as compared to the dynamics
of its surrounding systems, a pseudo steady-state assumption is made for this
system. This means that the dynamics of a steady-state system are ignored
(this will be further explained in section 6.4).

3.4 Hierarchical Organisation 33

Composite systems are introduced to address groups of systems, such that
large and complex processes can be handled easier. The next section discusses
the hierarchical organisation of physical topologies.

3.4 Hierarchical Organisation

A processing plant has a physical structure and this structure is represented
by the physical topology of the plants symbolic model. The physical topol-
ogy is the basic frame of the model. It represents the modellers view of the
plants physical structure: It describes the containment of and the interactions
between the different internal structural elements. Once constructed it de-
termines the model order and with it an important portion of the dynamics.
The physical topology of a processing plant is the foundation for the process
information, which is added in the next two stages of the modelling process.

The physical topology is constructed by deÞning the components of the
processing plant in the form of simple thermodynamic systems, which will
eventually describe the physical behavior of a spatial domain, occupied by
the plant. At this Þrst stage of the model deÞnition process, though, these
physical primitive systems can be seen as container-like items that have not
yet been Þlled nor further speciÞed.

In the previous examples, the number of primitive components (simple
systems) of the physical topology was very small. These processes could easily
be represented as a network of primitive systems and connections. For larger
and/or more complex process models, this ßat topology would obviously not be
very suitable. The number of systems does not need to grow very large before
it becomes rather difficult to maintain an overview over the deÞned model of
the process. The design, documentation and manipulation of these models
would become very hard. Therefore, an abstraction has to be introduced in
the form of a hierarchical deÞnition of the model. This additional structure
is laid over the ßat topology in such a way that it allows to address groups of
components c.q. composite systems. The result is a tree of systems, with the
modelled process as the root node.

There exist basically two techniques for developing a physical topology of
a process, namely the top-down and the bottom-up approach.

A modeller, who uses the top-down approach, starts with a simple initial
model, which is based on a crude design. This crude model is then reÞned by
adding details in several stages. In each stage the resolution of the model is
increased by reÞning an element.

In the bottom-up approach, combinations of the simple systems deÞne the
next level of systems in the hierarchy (namely composite systems) and so forth

34 Hierarchical Organisation: The Physical Topology

until Þnally on the top level the global system is deÞned, which of course rep-
resents the model of the process (the model of the process is a thermodynamic
universe). This grouping of individual components is arbitrary, but obviously
follows a logical scheme associated with physical location and functionality as
well as a degree of interaction between the components.

When using the bottom-up approach, a modeller focuses on the reuse of
existing model parts that have been already designed for other models. Clearly,
all parts of a model may not have been deÞned previously. Thus, both methods
are often used in the model building process. A good example to illustrate the
hierarchical decomposition of a process is a distillation column.

Example 3.5: Hierarchical Decomposition of a Distillation Pro-
cess

A distillation column is a multi-staged column where components
are separated due to differences in their vapor pressure. A typical
distillation column consists of a column with a central feed, a re-
boiler to supply the necessary energy, and a condenser for removing
most of the energy at the top (see Þgure 3.7b). The overhead vapor
stream is cooled and completely condensed, and then it ßows into
the reßux drum. The liquid from the reßux drum is partly pumped
back into the column (to the top tray) and the rest is removed as
the distillate product.

At the base of the distillation column, the liquid product stream
is split into two streams. The bottom product is drawn from the
column, whilst the rest is recycled into the heater for evaporation
and is returned to the base of the column.

The distillation column itself is considered to be composed of a feed
tray and two sections, which here consist of three trays each.

Figure 3.7 shows a possible way to decompose the distillation pro-
cess. This will Þnally lead to a ßat topology of the process (Þgure
3.7e), which consists only of thermodynamic simple systems (cir-
cles and squares) and connections (arrows). For the construction
of the physical topology as represented in Þg 3.7e, the following
assumptions have been made:

� Each tray is assumed to consist of two homogeneous phases (a
liquid phase L and a vapor phase V) and a �boundary phase�
B, separating the two homogeneous phases.

� The condenser and the reboiler can both be decomposed into
three lumped systems and a steady-state (boundary) system.

3.4 Hierarchical Organisation 35

Figure 3.7: Possible decomposition of a distillation process, in Þve steps.

36 Hierarchical Organisation: The Physical Topology

One lump as a heating/cooling medium and the other two as
homogeneous process phases (liquid and vapor phase).

� Heat losses from the column to the surroundings are assumed
negligible.

� The momentum balances for each tray are neglected.

The reference co-ordinate systems of the connections are chosen
based on the normal ßow direction of the streams. The mass streams
connecting the liquid and the vapor phases on each stage are se-
lected in such a way that the lighter components ßows in the positive
direction, and the heavier components in the negative direction.

Figure 3.8: Tree structure representation of a typical distillation column

It appears natural to group the different systems and form a hierar-
chical tree for the representation of the column. Figure 3.8 shows
such a hierarchical tree for the distillation process. For simplic-
ity, the connections between the simple systems are left out in this
Þgure, because only the tree representation of the physical topology
shall be illustrated with this example. Also, the feed stream source
and the product sinks, as well as the energy source and sink, are
left out in this representation.

The tree is composed of Þve hierarchical levels. The root of the
tree represents the highest hierarchical level, which of course is the

3.4 Hierarchical Organisation 37

complete distillation column. The column is composed of the dis-
tillation tower, the reboiler and the condenser. These three com-
ponents form the next hierarchical level. The distillation tower is
again composed of three components, namely a feed tray, and a
bottom and top section, which both consist of three trays. The two
heat exchangers, the reboiler and the condenser, are considered to
consist of one �tray�. Each tray is assumed to be composed of two
simple systems (a liquid phase and a vapor phase) and a steady-
state system (representing the phase boundary). The leaves of the
tree are simple systems, the other nodes are composite or composed
systems.

In this analysis a top down point of view was taken. When con-
structing the tree from bottom up, one could start the description as
follows: The liquid and vapor phase, which are both simple systems,
are grouped to form a composite system, namely a tray. Trays in
turn are grouped to form the bottom and top section of the distil-
lation tower, etc.

Either way, the hierarchical structuring of a process will result in a
tree of systems, the leaves of which are the thermodynamic simple
systems which thus deÞne the physical topology of the process.

¤

Hierarchical grouping of the simple systems will always result in a hi-
erarchical tree of systems with the modelled plant as the root node. The
representation of the physical topology of a processing plant in the form of a
tree is merely a matter of convenience. The handling of complex systems is
supported by hierarchical arrangement of the model components. The hierar-
chical tree which is superimposed on the basic network, the physical topology,
serves as a means to increase the level of abstraction. It increases the efficiency
of handling the components and it facilitates the grasping of the essence of
the whole process or parts of it (this will be illustrated in chapter 8). The
system, however, is completely deÞned on the lowest level, the leaves of the
strictly hierarchical multi-way tree, which represent the simple thermodynamic
systems. The reÞnement �multi-way� relates to the fact that each subsystem
may divide into an arbitrary number of subsystems. The tree is limited to
a �strictly hierarchical� decomposition, because the conservation principles
must hold for any part of the system. This means that none of the elements
can be part of two subsystems at the same time; cross links between branches
of the tree are thus prohibited. Why the employed tree structure has to be
strictly hierarchical can be proved with the following simple proof:

38 Hierarchical Organisation: The Physical Topology

Proof. Proof for strictly hierarchical decomposition
(Preisig, 1991c)
Let the overall system Σ, which represents the thermodynamic universe, be

composed of the two subsystems Σ1 and Σ2. The system Σ1 in turn consists
of the subsystems Σ11, Σ12 and Σ13. System Σ2 is composed of Σ13 and
Σ21. Figure 3.9 represents this tree structure. The leaves of the tree, i.e.
the systems on the lowest level, which don�t have any subsystems, represent
the simple thermodynamic systems. The other nodes represent the composite
systems. As illustrated, this tree is not strictly hierarchical because of the
cross links between Σ1 and Σ2 to Σ13.

Figure 3.9: A non-hierarchical tree.

Denoting the mass balance of the overall system Σ as MΣ, the following
relation exists:

MΣ =MΣ1 +MΣ2 (3.1)

correspondingly, the mass balances for Σ1 and Σ2 are as follows:

MΣ1 =MΣ11 +MΣ12 +MΣ13 (3.2)

MΣ2 =MΣ13 +MΣ21 (3.3)

substitution of the equations 3.2 and 3.3 in the overall mass balance equation
3.1 results in:

MΣ = (MΣ11 +MΣ12 +MΣ13) + (MΣ13 +MΣ21) (3.4)

= MΣ11 +MΣ12 + 2MΣ13 +MΣ21 (3.5)

Thus, the subsystem Σ13 is counted twice, which contradicts the conservation
principles.

Chapter 4

Chemical Distribution: The
Species Topology

Processing plants comprise of various physical, chemical and/or biological pro-
cesses in which their behaviour depends on the properties and the amounts of
the involved mass components. Mass is a carrier of capacity and it forms the
body or volume of the systems in the physical structure of the plant. Hence
it is essential in the formulation of process models.

Knowledge about the involved species and reactions is often required for
the behavioural description of a processing plant, because the behaviour of the
plant is often species dependent. For example, the dynamics of reactions and
the transfer of extensive quantities are characterised by kinetic laws and trans-
fer laws, respectively. These laws, which are usually part of the fundamental
models of processing plants, are deÞned as variables and constants, whose
values (at least partially) depend on the physical properties of the involved
species and the reactions between these species.

4.1 Chemical Distribution

The idea of the construction of the species topology is to facilitate the deÞ-
nition and identiÞcation of species and reactions occurring in various parts of
the processing plant. The species topology deÞnes which species are present in
which part of the process and thus deÞnes the basics of the chemistry/biology
of a processing plant model. This enables the generation of the relevant bal-
ances of extensive quantities for the systems.

The species topology is superimposed on the physical topology. Its con-
struction efficiently aids the model designer in the deÞnition of the chem-
istry/biology of the processing plant because it generates knowledge about
which species are present in every system in a physical topology and about

39

40 Chemical Distribution: The Species Topology

which reactions occur in every reactive system.

It should be noted that at this stage of the model deÞnition process the
quantities of the species in the systems are of no relevance. The association
of a certain species with a certain system only implies that this system has a
capacity for this particular species. If, for example, a system Σ is associated
with only one species, S, then this implies that species S is the only species
that can be present in system Σ. It does not imply that S has to be present in
Σ. At certain moments or maybe all the time during an evolution/simulation
of the process, species S may even be absent. At these particular moments
the system has no mass, but of course still has a capacity to store the species
S.

The existence of certain species and reactions in one part of the system
does not imply that they are the same in all parts of the system. In principle,
however, every chemical or biological species could be present in any part of
the system, so one could decide not to construct the species topology and
only generate a global set of species. This would mean that one deÞnes only
one set of species, which comprises all species that appear in the whole plant.
Every primitive system of the physical topology would then consist of all these
species. For each species in each system the species mass balances could then
be generated, which would of course result in a ßood of equations. In most
cases, many of these equations would be obsolete, because species are usually
constrained to a group of systems and therefore do not appear in every system.
The species of the ßuids in the two parts of a shell and tube heat exchanger,
for example, are usually not the same.

To aid in the deÞnition of the species topology, species and reaction databases
are used and three concepts are introduced, �permeability�, �uni-directionality�
and �reactions�, which support the idea of locality of chemical or biological
species. These three concepts will facilitate the deÞnition of the species topol-
ogy and will be illustrated in the next sections.

The permeability and uni-directionality concepts are associated with con-
nections and therefore with the common boundary element which the two
connected systems have in common.

4.2 Permeability of Mass Connections

The permeability is deÞned as a property of a mass connection, which con-
strains the mass exchange between systems by making the species transfer
selective. The mass connection is then deÞned as a semi-permeable thermo-
dynamic wall. An example of a process where the permeability concept could
come in handy is a simple diffusion process. The application of the selective

4.2 Permeability of Mass Connections 41

constraint on the transportation of species can also assist in the representation
of separation processes, such as ultra-Þltration or reverse osmosis.

Example 4.1: Diffusion of a Component from one Phase to
Another

Figure 4.1: a. A tank with two immiscible phases, b. Possible ßat topology
of diffusion process.

Consider a tank which contains two immiscible phases A and B
(Þgure 4.1a.) Phase A consists of species P and Q. Phase B
consists of species P and R. The simplest way to describe the
diffusion of species P from phase A to phase B (or the other way
around) is shown in Þgure 4.1b, which represents a ßat topology of
the diffusion process. The two phases are each modelled as a simple
lumped system and between the systems exists a mass connection
which describes the transfer of all species between those systems.
Remember that the direction of the connection is only a convention,
deÞning a reference direction for the actual stream. The actual
direction of the ßow depends on the driving force, which in this
case would be the difference in chemical potentials of P in each
phase.

To prevent the species Q and R from being transferred through the
connection, the permeability concept is introduced: The connection
between the two systems is deÞned as a semi-permeable thermody-
namic wall, which is only permeable for species P . This means
that only the species P will be transferred through the connection
and that, consequently, the transfer terms of the other species (Q
and R) will not appear in the (component) mass balances of the
systems because they are not transferred.

¤

42 Chemical Distribution: The Species Topology

Note that in principle the permeability concept does not have to be lim-
ited to mass c.q. species. The concept can be readily extended to any ex-
tensive quantity. In practice, though, this is not necessary as one normally
distinguishes between mass, heat, momentum and work transfer, which are all
handled individually (Preisig et al. 1990), (Preisig et al. 1989).

4.3 Uni-directionality of Mass Connections

The concept of uni-directionality is also a property that is related with mass
connections. The species topology, as it was described so far, allows for bi-
directional ßow in any mass connection. Since the ßow is (normally) dependent
on the state of the two connected systems, nothing can be said a priori about
the direction of the actual ßow. In fact, in many situations the ßow would
change in the course of the time interval over which the process is being ob-
served. Species that are not inhibited by a deÞned permeability may thus
appear on both sides of the connection, when computing the species topol-
ogy. In many applications, though, one-directional ßows are assumed and
thus species propagate in a constraint ßow pattern across the network. This
desired behaviour calls for deÞning two classes of mass connections, namely
uni-directional and bi-directional, where the latter should be the normal case
as it leaves the system unconstraint. Inversion of the ßow for a uni-directional
ßow would have to be handled as an exception as it contradicts the validity
range of the model.

4.4 Reactions

The reaction concept more or less speaks for itself. A chemical or biological
reaction is a mechanism that transforms a set of species, the reactants, into
a set of different species, the products. At this stage of deÞning the species
topology it is only necessary to know which species are transformed and which
species are generated in every (reactive) thermodynamic system. The proper-
ties of reactions (kinetic laws, heat of reaction, etc.) and the conditions under
which the reaction may take place are introduced at a later stage.

Chapter 5

Mathematical Description:
The Equation Topology

Having completed the Þrst two stages of the modelling process, it is already
possible to generate the dynamic part of the process model, namely the (com-
ponent) mass and energy balances for all the elementary systems, using the
conservation principles (Westerweele 1999). The resulting (differential) equa-
tions consist of ßow rates and productions rates, which are not further speciÞed
at this point. In order to fully describe the behaviour of the process, all the
necessary remaining information (i.e. the mechanistic details) has to be added
to the symbolic model of the process. So, in addition to the balance equations,
other relationships (i.e. algebraic equations) are needed to express transport
rates for mass, heat and momentum, reaction rates, thermodynamic equilib-
ria, deÞnition of intensive variables, and so on. The resulting set of differential
and algebraic equations (DAEs) is called the equation topology.

From a certain point of view the modelling process can thus be regarded as
a succession of equation-picking and equation-manipulation operations. The
modeller has, virtually at least, a knowledge base containing parameterised
equations that may be chosen at certain stages in the modelling process, ap-
propriately actualised and included in the model. The knowledge base is, in
most cases, simply the physical knowledge of the modeller, or might be a
reßection of some of his beliefs about the behaviour of the physical process.

In this chapter a classiÞcation of the variables and equations that are
occurring when modelling physical/chemical systems is made. Next, a concise,
abstract canonical form is presented, which can represent the dynamics of any
physical-chemical-biological process. After that, the algebraic equations, that
are necessary to complete the mathematical model of the process, are classiÞed.
The proposed classiÞcations make modelling into an almost trivial activity. A
link to linear system and control theory is given by transforming the model

43

44 Mathematical Description: The Equation Topology

representation such that is resembles a linear state space description. At the
end of the chapter substitutions and variable transformations are criticised
and control is brießy discussed.

5.1 Variable ClassiÞcation

The conservation of extensive quantities forms the foundation for describing
the dynamic behaviour of systems. Therefore, the set of conserved quantities
are called fundamental extensive quantities or the primary state. In section
5.3 it will be shown that the dynamic part (i.e. the differential equations) of
physical-chemical-biological processes can be represented in a concise, abstract
canonical form, which can be isolated from the static part (i.e. the algebraic
equations). This canonical form, which is the smallest representation possible,
incorporates very visibly the structure of the process model as it was deÞned
by the person who modelled the process (Westerweele and Preisig 2000): The
system decomposition (physical topology) and the species distribution (species
topology) are very visible in the model deÞnition. The transport and produc-
tion rates always appear linearly in the balance equations, when presented in
this form:

úx= Az+Br (5.1)

in which
x :: Fundamental state vector
z :: Flow of extensive quantities
r :: Kinetics of extensive quantity conversion

The purpose of the following classiÞcation is to provide a more effective link
between thermodynamics and system theory. The classiÞcation of variables
that is presented here is, in the Þrst place, based on the structural elements
of the modelling approach (namely systems and connections). The subclassi-
Þcation has its origins in thermodynamics. The variables that appear in the
mathematical model of a process are divided into three main groups, namely
system variables, connection variables and reaction variables.

5.1.1 System Variables

System variables are variables that are deÞned within the boundary of a system
(or sometimes a group of systems). They can be subdivided into two main
groups:

� The basic type of variables are the fundamental extensive variables or
fundamental state variables (x) representing the quantities for which

5.1 Variable ClassiÞcation 45

conservation laws are valid and for which we write balance equations
(See section 5.2). In most chemical processes, these are component
masses (total mass is the sum of the component masses), energy, and
momentum.

� The second group of variables is called application variables or secondary
state variables (y), which is a gathering of two categories, intensive
and geometrical variables, as well as other variables not covered by the
previous classiÞcation. The secondary state variables are quantities that
are derived from the primary state (x). The secondary state must be the
result of a mapping of the primary state (y=f(x)). Thus in any model,
this link must exist.

Intensive variables are those that provide a local characterisation of the
process. We distinguish among them potentials that are driving forces
for ßows such as temperature, pressure, chemical potential, and physical
properties characterising the �quality� of the material such as density,
or concentration.

Geometrical variables are those that characterise the dimension conÞgu-
ration of the process, independent of the presence of the physical process.
They may describe the extent of the process such as volume, area, etc.
or give localised characteristics such as porosity, tortuosity, etc.

The choice of the intensive and geometric variables that characterise
the process is very much application dependent in the sense that it is
determined by the Þnal goal of the model. A common property of the in-
tensive and geometric variables is that, in general, these are the variables
for which direct information through measurements is available.

5.1.2 Connection Variables

Connection variables are associated with physical connections and can be di-
vided into two groups:

� Flow rates of fundamental extensive quantities represent the rates by
which the respective quantities are exchanged between two intercon-
nected elementary systems. An important aspect that we retain for our
analysis is that some transfers may induce ßows of several fundamental
extensive quantities. For example, a mass transfer will induce ßows of
component masses for each substance present in the transferred mate-
rial, but also ßows of momentum and energy. Similarly, a momentum
transfer induces also an energy transfer in the form of mechanical work.
In general, each physical connection has assigned a unique fundamental
ßow and, possibly, several (or no) induced ßows.

46 Mathematical Description: The Equation Topology

We distinguish in our model between fundamental or primary ßow vari-
ables (z) and secondary ßow variables. The primary ßow variables are
the variables that appear directly in the balance equations. Secondary
ßow variables are related to the primary ßow variables via an algebraic
expression and do not appear in the balance equations (when, of course,
no substitutions have been made). For example, the mass ßow rate (pri-
mary ßow variable) of a mass stream of incompressible ßuid can be easily
expressed as a function of the corresponding volumetric ßow (secondary
ßow variable). The ßow rates are usually deÞned as a function of the
secondary state variables of the two interconnected systems (z=h(yor,
ytar)). The variables that represent ßow rates will be marked by a hat
���. For example, �m will typically denote a mass ßow.

� Application variables are a gathering of physical properties, geometrical
variables and other variables that are related to the connection (i.e. the
common boundary of the two interconnected systems).

5.1.3 Reaction Variables

The last group, the reaction variables, will also be split up into two subgroups:

� Production rates (r) of fundamental extensive quantities represent the
rates by which the respective quantities are produced inside an elemen-
tary system. The typical example are the chemical reaction kinetic rates.
These variables are associated with those phenomena in which transfor-
mations of fundamental extensive quantities occur inside an elementary
system. Such is the case for chemical reactions in which component
masses are being transformed into one another. As in the case of ßow
rates, we can speak of fundamental production rates and induced produc-
tion rates. In the case of chemical reactions, it is common practice (see
(Aris 1969)) to use the extent rate of a reaction to describe the evolution
of the reaction. The consumption rates of reactants and the production
rates of the reaction products are expressed in terms of the extent rate of
the reaction and thus become induced production rates. The production
rates are usually deÞned as a function the secondary state variables of a
system (r=g(y)). The variables that represent production rates will be
marked by a tilde ���.

� Application variables are a gathering of variables that are related to
the reaction (for example, the pre-exponential kinetic constant or the
activation energy of a reaction).

5.2 Fundamental State Variables and Equations 47

5.2 Fundamental State Variables and Equations

The behaviour of a system is characterised by the evolution of its state with
time. The choice of the elementary system is driven by the choice of the time-
scale in which the dynamics of the system is to be resolved. This choice is
fundamental to the analysis.

In order to characterise the behaviour of a system, information is needed
about the natural state of this system (at a given time) and about the change
of this state with time. The natural state of a system can be described by
the values of a set of fundamental extensive quantities, while the change of
state is given by the balance equations of those fundamental variables. The
fundamental extensive variables represent the �extent� of the system c.q. the
quantities being conserved in the system. In other words: they represent
quantities for which the conservation principle and consequently also the su-
perposition principle applies. So, for these variables, the balance equations are
valid. In most chemical processes, the fundamental variables are: component
mass, total energy and momentum. But other extensive quantities (charge, for
example) might be necessary sometimes and will obviously have to be present
in a generic modelling tool.

The dynamic behaviour of a system can be modelled by applying the con-
servation principles to the fundamental extensive quantities of the system.
The principle of conservation of any extensive quantity x of a system s states
that what gets transferred into the system must either leave again or is trans-
formed into another extensive quantity or must accumulate in the system (In
other words: no extensive quantity is lost). Symbolically we can write a bal-
ance equation for the fundamental extensive variable xf that characterises the
elementary system s as:

d

dt
xfs =

X
c

αc�xc +
X
p

�xp (5.2)

where the Þrst sum is taken over all the physical connections c which con-
tribute to the exchange of xfs and the second sum is taken over all produc-
tion/consumption processes p. Further, �xc represents the corresponding ßow
rate of extensive quantity x through connection c and �xp corresponds to the
production rate (which is assumed to be of negative sign if it corresponds to
a consumption process).

The direction of the ßow through a connection is deÞned relative to the ref-
erence co-ordinate system, which, in essence, is introduced for the consistency
of the models. This means that a ßow is positive if it moves in the reference
direction and negative when it moves in the opposite direction. Adding the
predicate of direction to every ßow allows for dynamic changes of the direc-
tionality without affecting the structure of the involved equations. Further,

48 Mathematical Description: The Equation Topology

the transfer is deÞned only once and is then incorporated in the two sets of
balance equations describing the behaviour of the two connected systems. The
coefficients αc ∈ {−1, 1} indicate the conventional direction of the ßow rate
�xc.

5.3 Balance Equations

This section focuses on the representation of the dynamic part of process
models with the aim to generate a minimal representation, which, though, still
shows clearly the structural elements for further use. This allows us to separate
the consecutive operations, such as model reduction and implementing various
assumptions, clearly from the development of the primary model. Another
important application of identifying structures in the modelling process, is to
use the extra available information to perform efficient model manipulations
in order to achieve, for example, superior numerical performance. Ideas to
use model structure for DAE index reduction, for example, can be found in
(Marquardt 1995), (Moe 1995) and (Westerweele and Preisig 2000).

Whilst we consider this approach elementary, the suggested approach is
clearly new. We present a new concise, abstract canonical form, which is able
to represent a very wide range of dynamic equations of Þrst-principle process
models, including physical, chemical and biological processes (Westerweele
2001). We call it canonical because it is minimal whilst, at the same time,
showing all the structural elements of the process models clearly: the physical
topology and the species topology, both of which were deÞned in the preceding
chapters.

5.3.1 Mass Balances

Mass is one of the prime extensive quantities when modelling physical-chemical
processes. The generic balance equation (5.2) applies to any of the species
present in the system, whereby the number of independent balances is equal
to the number of species, that is, if no constraining assumptions are being
made. The total mass balance is always the sum of the component balances,
thus it is linearly dependent on the component masses.

In most applications it is convenient to use the component mass balances
as the basic set of equations. The accumulation of the component masses in
a system (Σ) is balanced by the transfer across the system boundary and the
internal conversion through reactions:

únΣ =
X
∀m
αm�nm + �nΣ (5.3)

5.3 Balance Equations 49

where
nΣ :: Vector of species, in moles
�ni :: Molar massßow of mass connection i
αi :: Unit direction of reference co-ordinate ∈ {−1, 1}
�nΣ :: Production rate for all species

This equation represents the component mass balances of any dynamic
system, which is deÞned in a model of a physical-chemical process. We are
interested in Þnding a concise, abstract general form which represents the
complete model of any physical-chemical process. In the following subsections
the balance equations (5.3) will be rewritten with the aim of Þnding a general
form for the representation of an interconnected network of systems.

Matrix Notation for Production Term

The production term �n, which appears in the component mass balance for
a particular species Aj of an elementary system Σ, includes the information
about the rate of consumption or production of this species. This production
term is therefore deÞned as the sum of the rate expressions of each elementary
reaction, which involves the species Aj . Kinetic rate equations or �reaction
laws� are empirical relations, which describe the rate of conversion of one
species (Aj) in an elementary reaction as a function of the concentration of
all the species in the system. The empirical relations are very often power
laws, with the exponents reßecting the number of molecules of that particular
species involved in the reaction.

Chemical reactions are deÞned as stoichiometric equations that relate a
number of reactant molecules with a number of product molecules:

|ν1|A1 + |ν2|A2 +À+ |νn−1|An−1 + |νn|An (5.4)

With
νi :: Stoichiometric coefficient (>0 for products, <0 for reactants)
Ai :: ith species

The coefficients νi in this �equation� are called the stoichiometric coeffi-
cients. In order to use the reaction concept in mathematical modelling, the
�reaction equation� is slightly generalised, such that the chemical reaction can
be represented in a form that is almost like an equation. That is, for every
reaction a generalised stoichiometric equation is deÞned:

nX
i=0

νiAi = 0 (5.5)

50 Mathematical Description: The Equation Topology

or, in matrix notation:

νTA = 0 (5.6)

With,
ν :: Stoichiometric coefficient vector = (ν1 ν2νn)

T for n species
A :: Species vector, containing all �reactive� species of the system

under consideration = (A1 A2An)
T for n species

So, for a system involving multiple reactions, one can write the reactions
in the following generalised fashion:

SA = 0 (5.7)

With,
S :: Stoichiometric matrix = (ν1 ν2.....νm)

T for m reactions.

(Dimension: m x n)

Example 5.1: Stoichiometry

Given a reaction system:

A+B À C (5.8)

4B + 2D À 2E + F (5.9)

C À 4D (5.10)

C + 2E À A+ 2D +G (5.11)

the stoichiometric matrix is:

AT =
¡
A B C D E F G

¢
(5.12)

S =

−1 −1 1

−4 −2 2 1
−1 4

1 −1 2 −2 1

 (5.13)

¤

For a species Aj participating in a reaction r the following relation always
holds:

rr,Aj =
−−→rr,Aj −←−−rr,Aj (5.14)

With

5.3 Balance Equations 51

rr,Aj :: Rate of formation of species Aj by reaction r−−→rr,Aj :: Rate of production (or consumption) of species Aj by
forward reaction of r

←−−rr,Aj :: Rate of consumption (or production) of species Aj by
backward reaction of r

This means that the rate, with which the species Aj is produced (or con-
sumed), is deÞned as the rate of the forward minus the rate of the backward
reaction.

Obviously, the rate of production and consumption of the products and
reactants are related through the stoichiometric coefficients. For each reaction,
a unique quantity ξr can be deÞned that is a normalised rate of reaction and
which can be shown to be the time derivative of the extent of reaction:

ξr =
rr,Aj
νr,Aj

(5.15)

In homogeneous reaction systems, the production rate for a species is the
cumulative production rate for this species over all reactions. If the dimensions
of the reaction rates of a system are deÞned in mass per time unit then the
reaction term �n, which occurs in the component mass balances of a system
may be written as follows:

�n = ST ξ (5.16)

With

ξ :: Normalised reaction rates vector = (ξ1 ξ2ξm)
T for m reactions

General Notation for Accumulation and Transfer Terms

The mass connections describe the exchange of mass across the boundary
seperating two adjacent systems. The direction of the ßow through a connec-
tion is deÞned relative to the reference co-ordinate system, which, in essence,
is introduced for the consistency of the models. This means that a ßow is
positive if it moves in the reference direction and negative when it moves in
the opposite direction. Adding the predicate of direction to every ßow allows
for dynamic changes of the directionality without affecting the structure of
the involved equations. Further, the transfer is deÞned only once and is then
incorporated in the two sets of balance equations describing the behaviour of
the two connected systems.

We will now consider an elementary system in which no reactions occur
and which is part of a mass domain (i.e. a set of mass-interconnected systems)
that holds k species. The system Σ has m mass connections. The component

52 Mathematical Description: The Equation Topology

mass balances of this system read:

∗ únΣ =
X
∀m
αm

∗�nm (5.17)

in which ∗nΣ is the vector of molar masses of system Σ for all k species
present in the mass domain and ∗�nm is the vector of molar mass ßows (for
all k species) of mass connection m.. This is not the minimal representation,
for this would only include the component masses of the species that are
present in the system. Also, not all the species that are actually present in the
system have to ßow through the mass connections. Some connections may be
unidirectional or have a speciÞed permeabililty, whereby the permeability of a
mass connection is a property which constrains the mass exchange of certain
species between the connected systems (Preisig 1994b). All this calls for the
introduction of a selection matrix P, which we deÞne as follows:

P = γ ¯ I
k

(5.18)

where
γ :: Logical vector selecting species from a species set, dimension k

¯ :: Logical operator: eliminates ith row if γi is zero
I
k

:: Indentity matrix, dimension k × k
P :: Selection matrix

The resulting matrix P is derived from the identity matrix I
k
by eliminat-

ing the ith row for each γi being zero. The matrix thus has dimension l × k
where l ≤ k and l is the number of ones in γ. Multiplying a vector that repre-
sents all species of the mass domain (in a speciÞc system or mass connection)
with the selection matrix P (of this speciÞc system or mass connection) results
in a vector of present species (in this speciÞc system or mass connections):

n=P ∗n (5.19)

in which
n :: Vector of molar present masses

Premultiplied with its transposed, the selection matrix yields a vector that
is the same as the vector with all species, but with zeros substituted for species
not being present. With ∗nbeing a vector in which some elements are unde-
Þned, because the respective species is not present, the operation of above
equation substitutes for the undeÞned element a zero. The product PT P ∗n
has thus the same information contents as ∗n. Thus we write ∗n' PT P ∗n.

Using these deÞnitions, the component mass balances read:

∗ únΣ =
X
∀m
αmP

T
m
P
m
∗�nm =

X
∀m
αmP

T
m
�nm (5.20)

5.3 Balance Equations 53

If we Þnally introduce the systems selection matrix P
Σ
, the reduced represen-

tation becomes:

únΣ = PΣ
∗ únΣ =

X
∀m
αmPΣP

T
m
�nm (5.21)

It should be noted that:

PT P = diag(γ) (5.22)

Example 5.2: Selection Matrix Properties

Figure 5.1: A massdomain with four systems and three species.

Consisder a small mass domain consisting of four systems, four
mass connections and three species. The highlighted system (see
Þg. 5.1) only holds two of the three species present in the mass
domain. For this system the following relations hold:

γ =
£
1 1 0

¤
=> P =

·
1 0 0
0 1 0

¸
(5.23)

·
nA
nB

¸
=

·
1 0 0
0 1 0

¸ nA
nB

undefined

 (5.24)

 nA
nB
0

 ∼=
 1 0
0 1
0 0

· 1 0 0
0 1 0

¸ nA
nB

undefined

 (5.25)

¤

54 Mathematical Description: The Equation Topology

Representation for Interconnected Network of Systems

We shall now consider an interconnected network of systems in a mass domain
consisting of n systems, m connections, k species but no reactions. The mass
balance equations of a system Σ of this mass domain is now running over all
connections, also including connections that are not attached to this system Σ.
This is readily achieved by modifying the deÞnition of α to include �no ßow�,
thus for a connection j that is not connected to the system Σ: αΣ,j = 0 :

únΣ =
X
∀m
αΣ,mPΣP

T
m
�nm (5.26)

Where
αΣ,i :: RedeÞned unit direction of reference co-ordinate ∈ {−1, 0, 1}

This means that for all n systems the terms PT
m
�nm in the summation term

will be exactly the same (because ∗�nm ' PT
m
�nm). A concise abstract form,

which represents the component mass balances of all n systems of the mass
domain, can now be formulated:

ún = Γ
Σ
A
k
ΓT
m
�n (5.27)

or, equivalently:

ún = Γ
Σ
A
k
ΓT
m
Γ
m
∗�n (5.28)

For this representation the following deÞnitions are made:

n = [nT1 n
T
2n

T
n]
T and bn= [bnT1 bnT2bnTm]T (5.29)

Γ = blockdiag(P
i
) (5.30)

A
k
= A⊗ I

k
(5.31)

where
A :: Interconnection matrix = [αΣ1αΣ2αΣn]

T , dimension n×m
αΣi :: Vector of unit direction of reference co-ordinates of system Σ,

with αi,j ∈ {−1, 0, 1}
⊗ :: Kronecker tensor product, which multiplies each element of the

matrix A with the matrix I
k
(dimension A

k
= (nk)× (mk))

If (some of) the systems of the mass domain incorporate reactions then
the equation 5.27 simply becomes:

ún = Γ
Σ
A
k
ΓT
m
�n+ Γ

Σ
ST
Σ
ξ (5.32)

5.3 Balance Equations 55

in which

ST
Σ
= blockdiag(ST

i
) with i ∈ {1, 2,, n} (5.33)

and dim(ST
i
) = (number of species in mass domain)×(number of reactions in

system i)

5.3.2 Energy Balances

Energy is the second most important extensive quantity in chemical process
modelling. The energy balance has quite an involved history as it has been
the central object of thermodynamics. Many books have been written on
the subject of terminology of the thermodynamics and thermostatics and a
lot has been talked about the shortcomings of the theories itself. Grijseels
gives an outline of the theories that have been developed over the last century
and gives a clear view on what the problems are (Grijseels 1999). Such a
discussion goes beyond the scope of this project and we will simply accept the
basic assumptions that form the foundation of the thermodynamic theory.

In the most generic form, total energy is balanced. Total energy is the sum
of internal, kinetic and potential energy, all of which are associated with mass.
The communication with other systems, though, is not limited to these three
forms of energy, but also heat and work affect the energy content of a system.

Particularly heat is an interesting form of energy. Whilst today heat con-
duction is known to be based on kinetics - energy transfer on the molecular
level - early in the last century, heat was thought to be a massless material
that could be moved from one body to another. It was named caloric.

Work is an accumulation of various other energy related effects, such as
shaft (mechanical) work, volume work, electrical work and others.

A total energy balance for an arbitrary system, assuming reversibility of
all processes, may be written in the from

úE =
X
∀m
αm �Em +

X
∀h
αh�qh +

X
∀l
αl �wl (5.34)

with:
E :: Total energy := U +K + P
U :: Internal energy
K :: Kinetic energy
P :: Potential energy
�E :: Energy stream
�q :: Heat stream
�w :: Work stream

56 Mathematical Description: The Equation Topology

The total energy balance, as represented by equation 5.34, is almost never
used in this form. Usually a modiÞed version of this basic energy balance is
employed for modelling a process component. This modiÞed version is derived
from the basic energy balance through some simpliÞcations and assumptions.
Caution should be taken, though, when one uses derived energy models, be-
cause they are often incorrect or used incorrectly. One could easily introduce
faults when one is further simplifying a derived model, because of lack of knowl-
edge about previous assumptions and derivation steps. Knowledge about the
common assumptions and the derivation steps is thus essential for the correct
use of the different simpliÞed energy models.

In the following, we will derive the frequently used enthalpy balance and
internal energy balance from 5.34. Firstly, the attention focuses on the work
terms, in particular the volumetric work. Each mass stream is associated with
a volumetric work term because mass is of Þnite volume. Input streams of
mass add volumetric injection work and mass output stream are associated
with volumetric ejection work. Further, the volume of the system itself may
change with time. First split the sum of work terms into mass ßow related
work, system volume work and other work terms:X

∀l
αl �wl :=

X
∀m
αm �w

V
m + αs �w

V
s +

X
∀k
αk �wk (5.35)

The injection and ejection work terms are given by:

�wVm := pm �Vm (5.36)

and the system�s volume work by:

αs �w
V
s = −p

dV

dt
(5.37)

The volume work terms associated with the injection and ejection of mass
across the system boundary is moved from the work ßows to the mass ßows
and therefore the index set of the work streams changes, indicated by the new
index k:

úE =
X
∀m
αm(�Em + �wVm) +

X
∀h
αh�qh +

X
∀k
αk �wk − pdV

dt
(5.38)

Since the pair of internal energy and volume work shows up in every term
associated with mass, it was deÞned as a new quantity, called enthalpy:

H := U + pV (5.39)

d(U +K + P)

dt
=

X
∀m
αm(�Hm + �Km + �Pm) +

X
∀h
αh�qh

+
X
∀k
αk �wk − pdV

dt
(5.40)

5.3 Balance Equations 57

Up to this point, no assumptions have been made and equation 5.38 still
contains the same information as the original total energy balance (5.34). The
next step involves some assumptions, which are:

dK

dt
= 0 [system does not move] (5.41)

dP

dt
= 0 [system does not move] (5.42)X

∀m
αm �Km = 0 [no net change of kinetic energy] (5.43)X

∀m
αm �Pm = 0 [no net change of potential energy] (5.44)

which says that the system is assumed not to move during the process and
that the effects of kinetic and potential energy streams are compensating each
other or, at least, small compared to other energy effects in the system.

Applying these assumptions results in the now reduced form:

dU

dt
=
X
∀m
αm �Hm +

X
∀h
αh�qh +

X
∀k
αk �wk − pdV

dt
(5.45)

and, making use of the fact that dpV
dt = pdVdt + V

dp
dt , we get the enthalpy

balance:

dH

dt
=
X
∀m
αm �Hm +

X
∀h
αh�qh +

X
∀k
αk �wk + V

dp

dt
(5.46)

The enthalpy balance over all systems, written in matrix notation, be-
comes:

úH = A
m
�Hm +Aq�q+Ak �wk +V úp (5.47)

With

A
i
:: Interconnection matrices

V :: diag(V)

It should be noted here that the terms �Hm are enthalpy ßows that are
induced by corresponding mass ßows. So, a mass ßow always induces a ßow
of energy.

Assuming that the pressure in each system does not change (a very common
assumption), eliminates the V úp term from the enthalpy balance and leaves
only ßow terms. If this assumption is not made the balance equation can be
rearranged to produce:

úH−V úp = A
m
�Hm +Aq�q+Ak �wk (5.48)

58 Mathematical Description: The Equation Topology

In chapter 6 we will learn that in order to get an index 1 DAE, there has
to be an algebraic equation that directly or indirectly (for example via the
temperature) relates the enthalpy (H) of a system to the pressure (p) in that
system. Only in that case the number of equations and �unknown� variables
will be the same. This means that the pressure in a system will always be
calculated via pseudo steady-state relations and pressure changes in a system
shall therefore always be �fast�.

The energy balance is (almost) always used to obtain information about the
temperature in the system and it is very often seen that this balance is further
modiÞed (by doing further transformations and substituting the component
mass balances into the energy balance) such that eventually a �temperature
balance� is obtained. I will not perform this, often cumbersome derivation
here and state that it is often not necessary to do so. The same results can be
obtained when the transformation is not made.

5.3.3 Conclusions

In this section we have derived that the variables that are appearing in the
balance equations (i.e. transport and production variables) always appear
linearly for physical and chemical systems. The nonlinearities of a process will
therefore always emerge in the algebraic relations of the model.

The balance equations can always be abstracted with the following simple
form:

d

dt
x= Az+Br (5.49)

In which,
A :: Interconnection matrix

B :: Stoichiometric matrix,

x :: Primary state vector
z :: Transport rate vector
r :: Reaction rate vector

The matrices A and B are completely deÞned by the model designers def-
inition of the physical and species topology of the process under investigation.
Therefore these matrices can automatically be constructed by a computer pro-
gram. The only things a model designer has to do to complete the model are:

� Provide a link between the transport and reaction rate vectors and the
primary state vector. Each element in the transport and reaction rate
vectors has to be (directly or indirectly) linked to the primary state
vector. This �linking� is done with one or more algebraic equations.
If certain elements of the rate vectors are not deÞned in the algebraic

5.4 Algebraic Equations 59

equations, the mathematical system will have too many unknowns and
can consequently not be solved. Exceptions to this rule will be handled
in chapter 6.

� Give a mapping which maps the primary state of each system in a sec-
ondary state. This mapping is necessary because usually transport and
reaction rates are deÞned as functions of secondary state variables (a
heat ßow can, for example, be expressed as a function of temperature
difference).

5.4 Algebraic Equations

In addition to the balance equations, we need other relationships to express
thermodynamic equilibria, reaction rates, transport rates for heat, mass, mo-
mentum, and so on. Such additional relationships are needed to complete the
mathematical modelling of the process. A model designer should be allowed
to choose a particular relationship from a set of alternatives and to connect
the selected relationship to a balance equation or to another deÞned relation-
ship. As with the variables, we divide the algebraic equations into three main
classes, namely system equations, connection equations and reaction equations.

5.4.1 System Equations

For each system that is deÞned within the physical topology of a process, a
mapping is needed which maps the primary state variables (x) into a set of sec-
ondary state variables (y = f(x)). The primary states of a system are funda-
mental quantities for describing the behaviour of the system. The fundamen-
tal state is deÞned intrinsically through the fundamental behaviour equations.
The application of fundamental equations of component mass and energy bal-
ances intrinsically deÞnes component mass and energy as the fundamental
state variables. Alternative state variables are required for the determination
of the transfer rate of extensive quantities and their production/consumption
rate.

The equations that deÞne secondary state variables do not have to be
written in explicit form, but it has to be possible to solve the equations (either
algebraically or numerically) such that the primary state can be mapped into
the secondary state (this is further explained in chapter 10). This means
that each deÞned equation has to deÞne a new variable. Equations that link
previously deÞned variables together are not allowed, since the number of
equation would then exceed the number of variables and the set of equations
of this system would thus be overdetermined. Consider the following example:

60 Mathematical Description: The Equation Topology

Example 5.3: Redundant Equations

It is often seen that people insist on using so-called �normalis-
ing� equations, such as the sum of the fractions equals one, to
complete their model deÞnition. Such an equation is actually re-
dundant when you think about it, because the deÞnition of fraction
intrinsically implies this:

x :=
n

eTn
(5.50)

With

x :: Molar fractions vector
n :: Molar mass vector
e :: unity vector = [1 1 1 1.....]T

Premultiplying this deÞnition with the transposed unity vector eT

gives:

eTx :=
eTn

eTn
= 1 (5.51)

Equations 5.50 and 5.51 are linerarly dependent. So, adding the
equation eTx = 1 to the model does not add any new information
and could actually make computations more difficult. With our
modelling method, an equations like this is not allowed, since it
does not deÞne a new variable.

¤

Due to the nature of the different secondary variables, the system equations
are subdivided in some subclasses:

State variable transformations.

State variable transformations are relationships that provide links be-
tween the internal state of a system and various state variables appearing
in kinetic laws, transfer laws, and other deÞnitions such as physical and
geometrical properties. For example, the concentration c of the compo-
nents in a system can be characterised by their molar masses n divided
by the volume of the system V :

c :=
n

V
(5.52)

It should be noted here that, although these equations are called state
variable transformations it is not implied that these equations actually

5.4 Algebraic Equations 61

have to be used for substitutions and transformations. It is very often
seen that modellers insist on doing substitutions, hereby transforming
the fundamental balance equations. These often cumbersome transfor-
mations are usually not necessary for solving the problem under inves-
tigation and can usually be omitted.

Physical property relations.

Processing systems may consist of a variety of materials in the form of
pure materials, mixtures, dispersions or any other combination of ma-
terials in any state of aggregation. The modelling of these systems po-
tentially requires knowledge about the physical properties of all involved
materials. Examples of physical properties are: viscosity, thermal con-
ductivity, diffusivity, partial molar enthalpy and density.
While they are usually thought of as constants, they may change with
changing conditions in the system. They can also be a function of geo-
metrical properties and/or indirectly a function of other physical proper-
ties. The thermal diffusivity, for example, can be deÞned as a quotient of
the thermal conductivity divided by the density times the heat capacity.

Geometrical property relations.

The body volume and the boundary area (surface) of a system are two
geometrical properties of a system. These properties can be charac-
terised by alternative sets of geometrical properties. For example, the
body volume and boundary surface of a cylindrical system can be char-
acterised by the radius and the length of the cylinder.
Because the system can change its shape as a function of the changing
state, the geometrical properties of a system are a function of the sys-
tems state, and with it a function of the systems physical properties.
For example, increasing the temperature of a system at a constant pres-
sure, can expand the volume and boundary of a system. This can be
considered as a result of changing the density (a physical property) of
the contents of the system. The volume and mass of a system are always
linked through the density.

Equations of state

Equations of state are equations that express algebraic relations between
the application variables that characterise an individual system and that
are supposed to hold at each moment during the evolution of the process.
The term �equations of state� is borrowed from the thermodynamics as
it is used, for example, for the well-known relation between the pressure
p, the molar volume Vn and the temperature T of an ideal gas

pVn = RT (5.53)

62 Mathematical Description: The Equation Topology

called the equation of state of the ideal gas. Notice, however, that we
use this term here in a broader sense.

Besides the enumerated types of equations there might be other relations
that need to be considered during the modelling process.

5.4.2 Connection Equations

The ßow rates, which emerge in the balance equations of a system, represent
the transfer of extensive quantities to and from adjacent systems. These ßow
rates can be speciÞed or linked to transfer laws, which are usually empirical
or semi-empirical relationships. These relationships are usually functions of
the states, and the physical and geometrical properties of the two connected
systems. For example, the rate of conductive heat transfer Q through a surface
At between two objects with different temperatures can be given by:

Q := UAt(T1 − T2) (5.54)

This relationship depends on the temperatures T1 and T2 of the two objects
respectively. Temperature is of course a (secondary) state variable. The rate of
heat transfer also depends on the overall heat transfer coefficient U , which is a
physical property of the common boundary segment between the two systems,
and on the total area of heat transfer At, which is a geometrical property.

A transfer law thus describes the transfer of an extensive quantity between
two adjacent systems. The transfer rate usually depends on the state of the
two connected systems and the properties of the boundary in between.

In some cases it�s difficult to Þnd a reliable equation, which describes the
ßow through a connection. If one has no equation for the ßow one may have
to Þnd one or one has to make certain time scale assumptions. In the latter
case, the ßow rate is not speciÞed, but constraints are imposed on the state
variables of the connected system (such that the number of equations in the
mathematical model equals the total number of variables). To make the states
satisfy the constraints the ßows are forced to satisfy certain values. So, in these
cases, the ßow rates are not deÞned in the algebraic equations, but are present
in the differential equations and this will lead to so-called �high-index� models
The causes and solutions of high-index process models will be discussed in
chapter 6.

For each deÞned connection a model designer thus has a choice: either
specify the dynamics or impose constraints on differential variables of the
interconnected systems.

5.4 Algebraic Equations 63

5.4.3 Reaction Equations

Depending on the time scale of interest, we can divide reactions into three
groups (Westerweele and Preisig 2000):

� Very slow reactions (slow in the measure of the considered range of time
scales). These reactions do not appreciatly occur and may be simply
ignored.

� Reactions that occur in the time-scale of interest. For these reactions
kinetic rate laws can be used.

� Very fast reactions (relative to the considered time scale), for which is
assumed that the equilibrium is reached instantaneously.

As the non-reactive parts do not further contribute to the discussion, they
are left out in the sequel. For the �normal� reactions the reaction rates of the
reactions in the relevant times scale must be deÞned by kinetic rate equations.
The production terms are linked to kinetic laws, which are empirical equations.
They are usually written as a function of a set of intensive quantities, such as
concentrations, temperature and pressure. For example, the reaction rate r of
a Þrst-order reaction taking place in a lump is given by:

r := V k0e
−E/RT cA (5.55)

where
r :: Reaction rate of a Þrst-order reaction
V :: Volume of the system
k0 :: Pre-exponential kinetic constant
E :: Activation energy for the reaction
R :: Ideal gas constant
T :: Temperature of the reacting system
cA :: Concentration of component A

Temperature and concentration(s) of the reactive component(s) are state
variables of the reactive system. Reaction constants and their associated pa-
rameter such as activation energy and pre-exponential factors are physical
properties. In some cases, also geometrical properties of the system are part
of the deÞnition of the kinetic law, such as the porosity or other surface char-
acterising quantities.

The fast (equilibrium) reaction rates are not deÞned, because the equilib-
rium reactions are considered to have very fast dynamics relative to the time
scale of the process1. For these reactions only the reaction outcome has to be

1If one simply does not know the rate expression, the assumption of reaching the equilib-
rium quickly may also be done. This assumption may or may not be valid given the dynamic
time window.

64 Mathematical Description: The Equation Topology

given in the form of an equilibrium relation, which should hold at every time
instant. This is usually a nonlinear, algebraic relation that relates the masses
of the involving species to each other (e.g.: for a reaction AÀ B+C one may
write: K = cA

cBcC
). Consequently, unlike the situation where no equilibrium

reactions occur, the initial values of the masses of the involved species cannot
be arbitrarily chosen because the quantities of some species in the system are
now directly related to the quantities of some other species in the system.
This results in some differential equations of the system being directly related
to each other. Also, the production terms of the equilibrium reactions occur
only in the component mass balances and cannot be determined directly from
system equations. As with the undeÞned connections, the result is a high in-
dex model. The problems and solutions regarding high index models will be
handled in chapter 6.

For each deÞned reaction a modeller must either specify the kinetics or
give an equilibrium relation.

5.4.4 Summary

A mathematical model of a process can be abstracted with the following fom:

Balance equations: d
dtx= Az+Br

Variable declarations: yΣ = f(xΣ)

Transfer laws: zc = g1(yor,ytar) or 0= g2(yor,ytar)

Production laws: ri,Σ = h1(yΣ) or 0 = h2(yΣ)

(5.56)

In this (simpliÞed!) form, the balance equations run over all the funda-
mental extensive quantities (x) of all deÞned systems, over all the deÞned
connections (z) and over all the deÞned reactions (r) of the physical topology.
The matricesA andB are completely deÞned by the model designers deÞnition
of the physical and species topology of the process under investigation.

For each system in the physical topology a mapping must exist, which
maps the primary state (i.e. the fundamental state xΣ) into a secondary state
(yΣ). For each connection either the transfer law must be given, which deÞnes
the ßow (zc) through the connection as a function of secondary state variables
of the two interconnected systems, or a constraint must be given. For each re-
action either the production law must be given, which deÞnes the reaction rate
(ri,Σ) of the reaction as a function of secondary state variables of the system
the reaction takes place in, or a constraint must be given. When a constraint
is given for a connection or a reaction, two or more fundamental state variables
are linked together, either directly or indirectly. This means that not all state

5.5 Linear and Linearised Models 65

variables are independent and that some kind of index reduction method shall
have to be applied. A detailed discussion on the problems and their solutions,
when introducing assumptions, is given in chapter 6.

Each of the groups of equations in the model form has its own distinct
functionality within the model as each encapsulates a speciÞc kind of knowl-
edge. From a methodological point of view the classiÞcation of the model
equations has the advantage of separating the sources of modelling knowledge
and implicitly the sources of uncertainty in the model.

5.5 Linear and Linearised Models

Most models of processes that are of interest contain nonlinear algebraic equa-
tions (when modelling with our method the differential equations will never
be nonlinear). A large part of the literature on models, however, is devoted
to linear systems, mainly because there is no general mathematical theory
for the analytic solution of nonlinear equations. A reason for studying linear
models is the availability of analysis tools that enable strong results on system
and control theoretic properties such as stability, controllability, observabil-
ity, optimality, robustness, etc.. Furthermore, Þrst order approximations are
in many cases sufficient to characterise the local behaviour of the nonlinear
model. This means that often analysis based on linearisations reveals prop-
erties of the model locally (Sontag 1990)(Kailath 1980). The application of
linear models is, however, restricted since desirable and expected behaviour of
the model can only be guaranteed for operating conditions that are close to
the point of linearisation.

5.5.1 Linearisation

Linearisation is the process by which we approximate nonlinear equations with
linear ones. It is widely used in the study of process dynamics and design of
control systems for the following reasons (Stephanopoulos 1984):

� Closed-form, analytic solutions can be obtained for linear systems. Thus
a complete and general picture of a process�s behaviour can be obtained,
independently of the particular values of the parameters and input vari-
ables. This is not possible for nonlinear systems, and computer simu-
lation only provides the behaviour of the system at speciÞed values of
inputs and parameters.

� Most of the signiÞcant developments toward the design of effective con-
trol systems have been limited to linear processes.

66 Mathematical Description: The Equation Topology

The operation �linearisation� is straightforward: a non-linear function is
approximated (locally) by a linear function. Linearisation is typically done by
using a Taylor expansion of a function and neglecting the higher-order terms.
The (Þrst order) Taylor expansion series of a scalar function around a point
x0 looks like this:

flin(x) ≈ f(x0) +
µ
df(x)

dx

¶
x0

(x− x0) = a+ bx (5.57)

Vector functions can be linearised in a similar way, yielding:

f lin(x) ≈ f(x0) + J(x0) (x−x0) (5.58)

where J is the so-called Jacobian of f . The Jacobian is a matrix with the same
number of rows as f and with the same number columns as there are elements
in x. Each element (i,j) is calculated as:

Ji,j =
∂fi
∂xj

(5.59)

i.e. the i�th function differentiated with respect to the j�th variable. To
evaluate the Jacobian in a given point, x0, one simple inserts the values of x,
in the analytical Jacobian. For example, if

f(x) =

µ
f(x1, x2)
f(x2)

¶
=

µ
x1x2 + 2√

x2

¶
(5.60)

then the Jacobian is

J1,1 =
∂f1
∂x1

= x2, J1,2 =
∂f1
∂x2

= x1 (5.61)

J2,1 =
∂f2
∂x1

= 0, J2,2 =
∂f2
∂x2

=
1

2
√
x2

(5.62)

So a linear approximation to f(x) in the point x0 =

µ
x1,0
x2,0

¶
is

f lin(x) ≈ f(x0) + J(x0) (x−x0)

=

µ
x1,0x2,0 + 2√

x2,0

¶
+

Ã
x2,0 x1,0
0 1

2
√
x2,0

!µ
x1 − x1,0
x2 − x2,0

¶

=

Ã
x2,0x1 + x1,0x2 − x1,0x2,0 + 2

1
2
√
x2,0 +

1
2
√
x2,0
x2

!
(5.63)

Linearisation of vector functions is a very common technique and is used in
many engineering activities.

5.5 Linear and Linearised Models 67

5.5.2 State Space Description for Linear Models

A state space representation casts the model of the process into two equations,
the state equation which describes the dynamic behaviour of the system in
terms of the internal states and the measurement equation which describes the
static combination of the internal states and the inputs to measured quantities.
For linear, time-constant processes the equations take the following form:

the state equation: úx= Ax+Bu

the measurement equation: y= Cx+Du
(5.64)

With,
A :: System matrix [n× n]
B :: Input or control matrix [n×m]
C :: Output or measurement matrix [p× n]
D :: Direct coupling matrix [p×m]
x :: State variable vector [n]
u :: Input vector [m]
y :: Output vector [p]

n :: Order of the system

It should be noted that the here deÞned variables are not the same as the
ones deÞned in the previous paragraphs.

State space representations are not unique. Any representation can be
chosen dependent on the application. The proof is straightforward:

Proof. Proof for non-uniqueness of state space representations.

DeÞne a new state �x= Tx where T is non-singular. Substituting this new
state into the previous representation yields

T úx = T Ax+TBu (5.65)eúx = TAT−1 �x+TBu (5.66)

= �A�x+ �Bu (5.67)

y = T−1Cx+Du (5.68)

y = �C�x+Du (5.69)

which has the same input-output behaviour than the original representation.

An important reason to use state space representations for models is the
fact that a lot of standard methods for analysing such models have been de-
veloped.

68 Mathematical Description: The Equation Topology

This section builds a bridge between the widely used state space description
for linear models and linear models as derived with our modelling methodology.
There is some overlap in used notations in both descriptions, but this should
not give rise to any problems. Whenever a symbol relates to a state space
description, it will carry the superscript �∗� from here on.

In the previous paragraphs we learned that a model designer only has to
supply 3 kinds of algebraic relations, namely the system equations, which pro-
vide a mapping for the primary states to the secondary states of the systems,
connection equations, which deÞne the ßow rates and reaction equations, which
deÞne the reaction rates. Constraints will not be considered in this paragraph.

As derived in section 5.3, the balance equations can be written as:

úx= Az+Br (5.70)

The deÞnitions of the ßow (z) and reaction rates (r) are usually given as
explicit relations. The ßows are either manipulatable inputs (u) to the process
or a function of the state of the connected systems:

z = C
1
y +Du (5.71)

r = C
2
y (5.72)

The mapping from the primary state (x) to the secondary state (y) in the
linear case has the following form:

Ey = Fx (5.73)

and since each equation has to deÞne a new variable, the matrix E is square
and non-singular (i.e. invertible).

The link to the state space notation is now easily made:

y = E−1Fx (5.74)

z = C
1
E−1Fx+Du (5.75)

r = C
2
E−1Fx (5.76)

úx =
³
AC

1
+BC

2

´
E−1Fx+ADu (5.77)

= A∗ x+B∗ u (5.78)

y∗ = ΩE−1Fx (5.79)

= C∗ x (5.80)

Since y∗ represents the output vector, the matrix Ω is a selection matrix
selecting the desired output from the set of available state variables.

5.5 Linear and Linearised Models 69

The above derivation presumes that the ßows are directly written as a
function of the secondary state variables and that all deÞned secondary state
variables are needed for the deÞnition of the ßow and reaction rates. This
is, in general, not the case. Often, secondary ßow variables (z2), which do
not appear directly in the balance equations, are deÞned and are linked to
the primary ßow variables via an algebraic expression. Also, not all deÞned
secondary state variables are needed for the calculation of the ßow and reaction
rates. Taking an inverse of a large matrix costs a lot of computational effort.
So, in order to reduce the computational effort, the secondary state vector of
each system is divided into three subvectors:

y =

 y1y
2
y
3

 (5.81)

in which y
2
is a vector of secondary states that are actually needed to calculate

ßow and reaction rates. y
1
are secondary states that are only needed for the

calculation of y
2
. y

3
are states that are not needed for the calculation. They

only provide output information and do not have to be calculated during
a computation run, but can be calculated afterwards. The mapping of the
secondary state now takes the form:

E
11
y
1
= F

1
x (5.82)

E
22
y
2
= E

21
y
1
+F

2
x (5.83)

E
33
y
3
= E

31
y
1
+E

32
y
2
+F

3
x (5.84)

and the ßow and reaction rate are deÞned as:

z = C
1
y2 + Zz2 +D1

u (5.85)

z2 = C
2
y2 +D2

u (5.86)

r = C
3
y
2

(5.87)

For each system the vector y
2
can be written explicitly:

y
1
= E−1

11
F
1
x (5.88)

y
2
= E−1

22

³
E
21
E−1
11
F
1
+F

2

´
x (5.89)

If the y
2
vectors of each system are stacked together we get the y

2
of the

70 Mathematical Description: The Equation Topology

complete process. The following state space representation results:

úx =
³
AC

1
+AZC

2
+BC

3

´
E−1
22

³
E
21
E−1
11
F
1
+F

2

´
x

+A
³
D
1
+ ZD

2

´
u (5.90)

y∗ = Ωy = Ω

 y1y
2
y
3

 (5.91)

This may look difficult and cumbersome, but since these are all straightforward
linear operations, they can easily be automated by a computer program and
the only thing a model designer has to do is to provide the necessary equations.

Example 5.4: State Space Model of a Simple Tank

Consider a tank which has an inßow �m1 and an outßow �m2. The
height in the tank has to be controlled with the inlet ßow and the
volumetric ßow rate of the outlet ßow is linear with the liquid heigth
in the tank.

Figure 5.2: Tank with inlet and outlet

If ideal mixing and constant density are assumed, a simple model
can easily be derived:

Balance Equation:

úm = �m1 − �m2 or úm =
£
1 −1 ¤ · �m1

�m2

¸
(5.92)

Flow Rate Equations:

�m1 = ρ�V1 (5.93)

�m2 = ρ�V2 (5.94)

�V2 = αh (5.95)

5.5 Linear and Linearised Models 71

System Equations:

m = ρV (5.96)

h =
V

A
(5.97)

From this we can derive the above mentioned vectors and matrices:

x = m y
1
= V y

2
= h z =

·
�m1

�m2

¸
z2 = �V2 u = �V1 C

1
=

·
0
0

¸
C
2
= α

E
11
= ρ E

22
= 1 E

21
= 1

A F
1
= 1

F
2
= 0 Z =

·
0
ρ

¸
D
1
=

·
ρ
0

¸
D
2
= 0

Which results in the state space matrices:

A∗ = −α
A B∗ = ρ C∗ = 1

ρA

¤

5.5.3 State Space Description for Linearised Models

When a state space description is desired for a linearised model, a small prob-
lem arises. As derived in section 5.5.1, a linearised equation is of the form:

flin(x) = a+ bx (5.98)

and since such an equation contains a constant (a) it cannot be directly used for
the transformations described in the previous paragraph. One way to overcome
this problem is to introduce the concept of the deviation variable. Deviation
variables represent the deviation of the variables around a steady state working
point. So if a process is at its steady state, the deviation variables will be zero.
The deviation variable x0 of a variable x is deÞned as:

x0 = x− xs (5.99)

The algebraic relations of a process model can be written as:

0= f(x) (5.100)

72 Mathematical Description: The Equation Topology

where x here represents all the variables that are present in the algebraic
relations. A linearisation around the steady state values xs would result in:

0= f(xs) + J(xs) (x−xs) (5.101)

If we now substract the steady state conditions 0= f(xs) from this relation
and introduce the deviation variables x0 = x−xs we get:

0= J(xs)x
0 (5.102)

When we also substract the steady state conditions from the balance equations
we ge the following result:

úx0 = Az0+Br0 (5.103)

z0 = C
1
y0 +Du0 (5.104)

r0 = C
2
y0 (5.105)

Ey0 = Fx0 (5.106)

Example 5.5: Linearised State Space Model of a Simple Tank

Consider the previous example. Now the volumetric ßow of the
outlet is deÞned as:

�V2 = α
√
h (5.107)

The linearised model then simply becomes:

úm0 = �m01 − �m0
2 (5.108)

�m0
1 = ρ�V 01 (5.109)

�m0
2 = ρ�V 02 (5.110)

�V 02 =
α

2
√
hs
h0 (5.111)

m0 = ρV 0 (5.112)

h0 =
V 0

A
(5.113)

The state space representation of this model can be generated using
the approach mentioned in the previous paragraph.

¤

5.6 Substitution, yes or no? 73

If one chooses not to linearise around a steady state working point but
around any working point of the process, the solutions becomes slightly dif-
ferent. Linearising the model of the process around a working point results in
the following representation:

úx = Az+Br (5.114)

z = C
1
y +Du+K

1
(5.115)

r = C
2
y+K

2
(5.116)

Ey = Fx+K
3

(5.117)

Where K
1
, K

2
and K

3
are constant matrices that appear due to the lineari-

sation of the algebraic equations. The differential equations are not extended
with a constant matrix because these equations are already linear. To get the
linear state space representation we get:

y = E−1
³
Fx+K

3

´
(5.118)

úx =
³
AC

1
+BC

2

´
E−1Fx+ADu

+
³
AC

1
+BC

2

´
E−1K

3
+AK

1
+BK

2
(5.119)

= A∗ x+B∗ u+K (5.120)

If we now consider the matrix K to be an �input� to the system, we get the
following result:

úx = A∗ x+ �B
∗
�u (5.121)

5.6 Substitution, yes or no?

It is often seen that model designers insist on eliminating the extensive vari-
ables from the model equations. The main reason that is brought up for this
preference to write a model that does not involve the extensive variables is
that often only the evolution of the application variables is of interest. Also,
the transfer laws and kinetic laws are usually given in terms of intensive state
variables. Therefore most model designers think they must transform the ac-
cumulation terms and perform a so-called state variable transformation. Most
textbooks which cover modelling also perform these transformations, often
even without mentioning why. But are these, often cumbersome, state vari-
able transformations necessary to solve the considered problems?

In most cases, the transformations are not necessary. There are several
reasons to consider the differential algebraic equations (DAEs) (5.56) directly,

74 Mathematical Description: The Equation Topology

rather than to try to rewrite them as a set of ordinary differential equations
(ODEs) (Brenan et al. 1996): First, when modelling physical processes, the
model takes the form of a DAE, depicting a collection of relationships between
variables of interest and some of their derivatives. These relationships may
be generated by a modelling program (such as the Modeller). In that case,
or in the case of highly nonlinear models, it may be time consuming or even
impossible to obtain an explicit model. Computational causality is not a
physical phenomenon, so it is rather inconvenient if a model designer has to
determine the (numerically) correct causality of the equations (Cellier and
Elmqvist 1993)(Thevenon and Flaus 2000). Also, reformulation of the model
equations tends to reduce the expressiveness (Fábián 1999). Furthermore, if
the original DAE can be solved directly it becomes easier to interface modelling
software directly with design software. Finally, reformulation slows down the
development of complex process models, since it must be repeated each time
the model is altered, and therefore it is easier to solve the DAE directly.

These advantages enable researchers to focus their attention on the physical
problem of interest. There are also numerical reasons for considering DAEs
(Brenan et al. 1996). The change to explicit form, even if possible, can destroy
sparsity and prevent the exploitation of system structure.

Small advantages of transforming the model to ODE form can be that for
(very) small systems an analytical solution is available and that sometimes
less information of physical properties is needed when substitutions are being
made (sometimes, some of the parameters can be removed from the system
equations when substitutions are made). Another advantage could be that,
by doing substitutions, some primary state variables are removed from the
model description which could make the code faster, because less variables
have to be solved. In general, though, these advantages do not outweigh the
disadvantages.

If one does want to perform substitutions, I recommend that these are
done at the very end of the model development and not, as is generally seen,
as soon as possible. Postponing the substitutions as long as possible gives a
much better insight in the model structure during model development.

5.7 Control

Control is added in the last step of our modelling methodology and can be
seen �seperately� from the previous steps, since for most models that are
meant for control, Þrst the model without the controllers is constructed. The
control part is usually added in a later step and can be superimposed on
the model without affecting the previous modelling steps. Controllers process
measurement and setpoint information. The Þrst taken from the process state,

5.7 Control 75

the latter being an input to the process and determining its desired behaviour.
Control generates (information) signals as output, which in general affect the
ßow of extensive quantities inside the process.

Adding a controller to a process has only one goal, namely to modify the
dynamic behaviour to the process to be controlled, with the objective of im-
posing a desired behaviour. The controller may be introduced for different
reasons. The controller may force the process to follow a trajectory (the servo
or steering problem) or the controller may serve the purpose of compensat-
ing for undesired effects of the environment has on the process (disturbance
rejection).

Whatever the control objectives are, there is always a need to monitor
the performance of the process that needs to be controlled. This is done
by measuring the values of certain process variables (such as concentrations,
ßuid height, temperatures, ßow rates, pressures, etc.). The measurements are
processed by the controller, which then steers some input variables in order
to control the process. Usually a process has a number of available input
variables which can be adjusted freely. Which ones are selected to use as
input (i.e. manipulatable) variables is a crucial question, as the choice will
affect the quality of the control actions we take (Stephanopoulos 1984).

Clearly, there is a ßow of information to and from the controller and there-
fore two new elements need to be introduced, namely the information system
(i.e. the controller itself) and the information connection (through which the
information �ßows�: The target object of the information connection reads
variables of the origin object).

The input (i.e. the measurement) to the information system can, in prin-
ciple, be any time dependent variable of the process. Consequently, the infor-
mation connection that provides the input to the information system can be
connected to any system (either lumped, distributed, source, sink, steady state
or composite), any connection or any other information system (cascade con-
trol, providing �new� setpoints) of the physical topology of the process. Most
of the time, however, the measurements are closely related to the primary
states of a process and the information will come from lumped systems.

The controller receives the measurement information and decides what ac-
tion should be taken. The variables that can be manipulated by the controller
are usually some connection characteristics, such as the position of a valve.
The control valve is the most frequently encountered Þnal control element,
but not the only one. Other typical Þnal control elements for chemical pro-
cesses are: relay switches (providing on-off control), variable-speed pumps and
variable-speed compressors (Stephanopoulos 1984).

From a physical point of view, the variables that can be manipulated will

76 Mathematical Description: The Equation Topology

always be connection variables and never system or reaction variables, since a
controller cannot change the state of a system directly. It can only manipulate
the ßow of extensive quantities, which in turn affect the state of the two
interconnected systems. Sometimes, however, either for convenience or as a
simpliÞcation, a controller is made to directly affect some secondary state
variables of a source or sink system. A controller that directly inßuences the
temperature of a heat stream, for example, is physically impossible but often
seen in modelling (especially if the temperature of the stream can be adjusted
relatively quickly compared to the dynamics of the controlled system). The
output of an information system can therefore be connected to any connection,
any source or sink system or any other information system.

The possible information ßows are summerised in Þgure 5.3.

Figure 5.3: Possible information ßows to and from information systems.

Controllers are dynamic elements. The controller equations can consist of
algebraic, differential and integral equations and since the controller normally
has a state, the order of the overall model is increased by adding control
elements to the physical topology of the process.

Further discussion of control, which obviously has a lot more to it than
the few things that are mentioned in this brief section, is not considered to be
relevant for pursuing our goal of formulating a systematic modelling method-
ology. It is left to the reader to Þnd out more about the numerous subjects
on control, such as feedback control, feedforward control, inferential control,
PID, LQR, LQG, , H2, H∞, state feedback, cascade control, etc.. All these
types of controllers can be implemented in an information system, as long as
they are realisable and presented in a DAE form.

Chapter 6

Assumptions: Problems and
Solutions

Constraints and assumptions describe all kinds of algebraic relationships be-
tween process quantities which have to hold at any time. A volume constraint,
for example, restricts the volume of a simple system or the sum of volumes of
a set of systems. Assumptions may result in models which are cumbersome
to solve. Potential problems can very often be avoided at an early stage of
the model development by keeping clear of certain assumptions or by directly
dealing with the cause of the potential problems.

This chapter addresses the structure and representation of modelling as-
sumptions. One can distinguish between several types of assumptions: Struc-
tural assumptions (i.e. the construction of the physical topology), order of
magnitude assumptions (very small versus very large) and assumptions on
relative time scale (very slow versus very fast). These assumptions are usually
introduced with a goal, namely to simplify the description of the behaviour
by neglecting what is considered insigniÞcant in the view of the application
one has in mind for the model. Whilst indeed such assumptions do simplify
the description, they are also the source of numerous problems, such as index
problems, which make the solving of the equations very difficult.

In this chapter the assumptions that can lead to computational problems
are classiÞed. Next, each class is analysed on how the assumptions affect the
solvability of the model equations. The proposed solutions of these problems
correspond to the Simple and Full Index Reduction Algorithm as presented in
(Moe 1995). Furthermore, the impact of making steady-state assumptions and
the effects of introducing events in the model description will be discussed.

77

78 Assumptions: Problems and Solutions

6.1 High-index Models

Dynamic process models, as derived with our modelling methodology, consist
of differential and algebraic equations (DAEs). Unfortunately, most engineers
have little knowledge of the theory of DAEs, since most of the calculations
that have to be performed during education are steady-state simulations. If
dynamics are considered, a mathematical description of the (usually very sim-
ple) model is derived in the form of ordinary differential equations (ODEs).

One of the major advantages of writing a model in DAE form as opposed
to ODE form, is that a modeller does not have to perform a set of often
cumbersome mathematical manipulations, such as substitution and symbolic
differentiation (Cellier 1991)(Brenan et al. 1996)(Bujakiewics 1994). A good
book describing the basic mathematical theory of DAEs and presenting and
analysing numerical methods is (Brenan et al. 1996). Our work is concerned
with a speciÞc type of DAEs, so the needed theory is limited.

According to (Moe 1995), dynamic process models can be divided into low
index models (index 0 and 1) and high index models (index two and higher
and some index one models). The differential index or index is a measure
of the problems related to initialisation and integration of dynamic process
models. The problems related to solve a dynamic process model increase with
increasing index. (Brenan et al. 1996) give the following general deÞnition for
the index of nonlinear DAEs:

Definition 6.1.1 The minimum number of times that all or part of F (t, y, úy) =
0 must be differentiated with respect to t in order to determine úy as a contin-
uous function of y, t (i.e.: úy = G(t, y)), is the index of the DAE

They stress that it is not recommended to perform this series of differ-
entiations as a general solution procedure for DAEs. Rather the number of
such differentiation steps that would be required in theory turns out to be an
important quantity in understanding the behaviour of numerical methods.

According to the deÞnition an ODE (either explicit or implicit) has index
zero. DAEs with index zero and one are generally much simpler to understand
(and much simpler to solve) than DAEs with index two or higher.

With our modelling method we strive to produce semi-explicit index one
models, since these can be easily used for simulation by any DAE-solver.
Higher index models must either be simulated directly by a special integra-
tor which tackles high index DAEs, or be transformed to semi-explicit index
one and integrated. Two simple tests that guarantee structurally semi-explicit
index one models are (Moe 1995):

� All algebraic variables must be present in the algebraic equations.

6.2 Assumptions Leading to High-index Models 79

� It must be possible to assign each algebraic equation to an algebraic
variable. Assignment of all equations and variables must be possible.

If one or several algebraic variables are absent from the algebraic equations,
then the model index is two or higher.

Example 6.1: Index Test

Consider the following simple linear models A and B:

A B
úx1 = y1 − y2 úx1 = y1 − y2
úx2 = y2 úx2 = y2
y1 = 10 y1 = 10
y2 = 5x1 − x2 0 = 5x1 − x2

(6.1)

Both models look very similar. They both have differential variables
x1 and x2 and algebraic variables y1 and y2. Model A has index
one, because all the algebraic variables are present in the algebraic
relations and an algebraic equation can be assigned to each of the
algebraic variables.

The algebraic variable y2 of model B only appears in the differen-
tial equations and is not present in the algebraic equations of this
model. Hence, the index of this model exceeds unity. In contrast to
model A, the initial values of the differential variables of model B
may not be chosen independently and the model, in this form, can-
not be integrated by most available integrators. Before the model
can be integrated, the index has to be reduced either by the solver or
the modeller himself 1. Methods for reducing the index of a model
are discussed in section 6.3.

¤

6.2 Assumptions Leading to High-index Models

Many high-index problems are caused by a model purpose that is not carefully
considered, because the modeller does not want to include some of the rapid
dynamics in the model, by assumptions that may not be essential or because
the modeller wants to include certain variables in the model (Moe 1995). Our

1There are some numerical methods available that can solve certain types of higher index
models directly (Petzold and P.Lötstedt 1986)(Brenan et al. 1996), but these are far from
straightforward.

80 Assumptions: Problems and Solutions

modelling method forces a model designer to be more aware of the assump-
tions he makes. Therefore, potential high index model formulations can be
detected and/or avoided at an early stage of the model development. Know-
ing the causes of high index formulations helps the model designer in carefully
considering the modelling purpose and the assumptions he wants to make.

Assumptions that impose direct or indirect constraints on the differential
variables lead to high index models. But a modeller cannot simply impose
some constraints on the differential variables. A constraint is always imposed
by some �driving force� (i.e. a ßow or reaction, since these are the only �forces�
that appear in the differential equations), which forces the differential variables
to adhere to the constraint. This means that instead of giving a description
for the rate, a ßow or reaction remains �unmodelled� and a (direct or indirect)
constraint on the differential variables is given.

There can be several reasons why a modeller wants to introduce assump-
tions:

� Only slow dynamics of the process are of interest. In this case the rapid
dynamics can be neglected.

� Difficulties in Þnding reliable rate equations may force a modeller to
make quasi steady-state assumptions.

� In order to perform model reduction, simplifying assumptions may be
introduced.

In section 3.3 the term time scale was introduced. Modelling systems in a
range of time scales, the capacity terms are chosen accordingly but also the
transport and the production terms. For parts being outside of the time scale
in which the dynamics are being modelled, a pseudo steady-state assumption is
made. For example, (very) fast reactions - fast in the measure of the considered
range of time scale - are assumed to reach the equilibrium (for all practical
purposes) instantaneously, and very slow ones do not appreciatly occur and
may be simply ignored. For the effects of small and large capacities, the
singular perturbation theory is applicable (see section 6.4).

6.3 Index Reduction Algorithms

In section 5.3 it was derived that the differential variables (i.e. the primary
state variables) are manipulated by the ßows and reactions (see, for example,
equation 5.49). In low index models these ßows and reactions are either spec-
iÞed or expressed by rate equations. In high index models, constraints are

6.3 Index Reduction Algorithms 81

imposed on the primary state variables, either directly or indirectly. To make
these variables satisfy the constraints and thus avoid inconsistent simulation
results, the unmodelled ßows and unmodelled reactions are forced to satisfy
certain conditions.

From the point of view of the numerical solution, it is desirable for the
DAE to have an index which is as small as possible (Brenan et al. 1996).
Numerous methods have been proposed to achieve a reduction of the index
by differentiating the equations that cause constraints on the primary state
variables, e.g. (Gear and Petzold 1984), (Gear 1988), (Gear 1990), (Bachmann
and Pallaske 1990), (Bachmann and Pallaske 1989), (Fábián and Rooda 2001),
(Chung and Westerberg 1990), (Mattsson and Söderlind 1993), (Pantelides
1998). Differentiation is, however, not always necessary (Westerweele and
Preisig 2000)(Moe 1995). Sometimes it is possible to prevent the high index
from occurring by applying algebraic approaches that utilise modelling insight
and respective algebraic procedures.

6.3.1 Simple Index Reduction Algorithm

The easiest way to reduce the index of a dynamic process model is to apply
the Simple Index Reduction Method (Moe 1995). For convenience, the ßows
and reactions that appear in the balance equations are split up in a �normal�
(subscript n) and an �unmodelled� (subscript u) part:

úx= A
n
zn+Bn rn +Au zu+Bu ru (6.2)

This form is used to reduce the index of a model when certain assumption are
being made. There are numerous situations in which this form is applicable.
In general, these situations arise from mixing some �steady-state thinking�
into a dynamical context (Weiss 2000). It is the case of the so-called quasi
steady-state assumptions. For example, the assumption that a chemical reac-
tion within a chemical process is constantly at equilibrium (i.e. an algebraic
relation between concentrations is assumed to hold at all time). This is a
quasi-equilibrium, since addition of reactants will move the equilibrium point
of the reaction according to Le Chateliers principle, towards consumption of
the added reactants. Examples of this type of assumptions can be found in
(Moe et al. 1995), (Marquardt 1995) and (Pantelides 1998).

High index process models arise when unmodelled ßows and/or reactions
are used for describing the process. If these ßows and reactions are of no inter-
est, then the index problem can be resolved by eliminating the undeÞned terms
(zu and ru) by forming linear combinations of the balance equations. This can
be achieved by multiplying equation 6.2 with a matrix Ω, of which the rows

82 Assumptions: Problems and Solutions

constitute a basis for the null-space of
¡
A
u
B
u

¢
, i.e. Ω

¡
A
u
B
u

¢
=0.

This results in:

Ω úx = ΩA
n
zn+ΩBn rn +Ω

¡
A
u
B
u

¢µ zu
ru

¶
= ΩA

n
zn+ΩBn rn (6.3)

If we now deÞne new variables:

x∗ = Ωx (6.4)

we get:

úx∗ = ΩA
n
zn+ΩBn rn (6.5)

By multiplying the balance equation by Ω and introducing an algebraic rela-
tion for each unmodelled ßow and reaction, we have reduced the order of the
original system and eliminated the undeÞned transfer and production terms.
So, for a model that has n balance equations (i.e. the order of x is n) and in
which k unmodelled ßows and reactions are deÞned, the condensed represen-
tation of the model comprises (n − k) differential equations and k algebraic
equations, which together describe the dynamics of the model. (Note that for
an unmodelled ßow,which transports i species, i algebraic relations have to be
deÞned). This Simple Index Reduction Method eliminates all the unmodelled
terms from the model via simple algebraic manipulations. If the values of
the removed variables are of interest, either post processing of the simulation
results is required, or an algorithm, which does not eliminate these variables,
must be applied (Moe 1995).

The result of the Simple Index Reduction Method is a semi-explicit DAE
of index one and can be solved with standard algorithms. Chapter 10 will
elaborate on this.

Example 6.2: CSTR With Equilibrium Reactions (Westerweele
and Preisig 2000)

Consider a CSTR with 6 components A,B,C,D,E and F . The
reactor has a constant volumetric in- and outßow bV and there are
three reactions taking place in this reactor. Two of these reactions
(the Þrst and the third) are considered to equilibrium reactions:

AÀ B +D K1 =
cBcD
cA

B À C +D eξ2 = (k2acB − k2bcCcD)V
D +E À F K3 = cDcE (6.6)

Normally one would expect that the dimension of the state space of
the system equals the number of components which are associated

6.3 Index Reduction Algorithms 83

with the system (when energy of the system is not modelled!) and
that the model of the system would include 6 differential equations
(one for each component). But since two of the occurring reactions
are considered to be equilibrium reactions, two of those differential
equations are replaced by algebraic relationships and the actual di-
mension of the state space of the system is reduced to four.

Unreduced balance equations:

ún = Γ
Σ
A
k
ΓT
m
�n+ Γ

Σ
S
eq
ξ
eq
+ Γ

Σ
S
r
ξ
r

(6.7)

in which:

ST
eq
=

−1 0
1 0
0 0
1 −1
0 −1
0 1

 ; ST
r
=

0
−1
1
1
0
0

 ; eξr = eξ2; Γ
Σ
= Γ

m
= I;

A =
£
I −I ¤ ; bnT = £ bn1 bn2 ¤ = h c1bV cbV i

Finding the left null-space of Γ
Σ
S
eq
results in:

Ω =

1 1 0 0 0 0
0 0 1 0 0 0

−1 0 0 −1 1 0
1 0 0 1 0 1

 (6.8)

The index reduced model of the system can be written as follows:

Ω ún = ΩΓ
Σ
A
k
ΓT
m
�n+ΩΓ

Σ
ST
r
eξ
r

K1 = cBcD
cA

K3 = cDcE
c = n

V ;

(6.9)

This model can be easily solved with a DAE solver when the vector
�n and the constants K1, k2a, k2b, K3 and V are appropriately
deÞned and appropriate initial conditions are given (see section
10.3 for more details on solving of a simulation problem).

¤

84 Assumptions: Problems and Solutions

6.3.2 Full Index Reduction Algorithm

Unfortunately, it is not always possible to use the elegant Simple Index Re-
duction Method whenever an unmodelled ßow or reaction occurs. This seems
to be especially the case for �partially unmodelled ßows�. In this case the
primary ßow variable is deÞned, but a secondary ßow variable is introduced,
which remains unmodelled. For example, the molar mass ßow bn through a
connection can be deÞned as the concentration c times the volumetric ßow
rate bV :

bn = cbV (6.10)

Notice that the molar mass ßow bn is a vector, while the (unmodelled) volu-
metric ßow rate bV is a scalar. Since a scalar is unmodelled, only one algebraic
constraint may be given. In many cases this will be something like constant
volume or constant pressure.

It is not possible to remove the unmodelled variables from the differen-
tial equations by algebraic manipulations, so a different, more general index
reduction algorithm shall have to be applied in such cases.

The Full Index Reduction algorithm (Moe 1995) removes differential equa-
tions from the model deÞnition and replaces them with new algebraic equations
until the number of differential equations and dynamic degrees of freedom are
the same. The algorithm does not remove variables nor does it introduce new
variables.

The constraint equations always contain variables that are directly or indi-
rectly linked to the primary state variables. All equations (i.e. the deÞnitions
y= f(x)) that link these variables to the primary state variables x are col-
lected. Next, these equations, which usually are a small subset of all system
equation, are rewritten as 0= f∗(y∗) and differentiated with respect to time:

∂f∗(x∗,y∗)
∂t

=
∂f∗(y∗)
∂y∗

∂y∗

∂t
+
∂f∗(x∗,y∗)

∂x∗
∂x∗

∂t
= F

y
úy∗ +F

x
úx∗ = 0

(6.11)

in which the matrices F
x
and F

y
are Jacobians that can be a function of

primary and/or secondary state variables and x∗ and y∗ are subsets of all
primary and all secondary state variables respectively. The left null-space Ωy
of F

y
is calculated and multiplied with 6.11:

Ω
y
F
y
úy∗ +Ω

y
F
x
úx∗ = Ω

y
F
x
úx∗ = 0 (6.12)

6.3 Index Reduction Algorithms 85

(In the case y∗ = 0 : Ω
y
= I).

Since x∗ is a subset of x we can write:

x∗ = Px (6.13)

in which P is a selection matrix, selecting the elements of x which are present
in the vector x∗.

The new algebraic equations are obtained by substituting the original bal-
ance equations in 6.12 using 6.13:

Ω
y
F
x
P
¡
Az+Br

¢
= 0 (6.14)

The number of rows of Ω
y
indicate how many constraints were deÞned and

how many differential equations have to be removed from the original balance
equations. The differential equations cannot be removed at random, but must
be removed without loss of information and without introducing additional
degrees of freedom to the model. This is done by satisfying the following
conditions:

� For each row in the matrix Ω
y
F
x
(which corresponds to a single con-

straint) one primary state has to be removed by removing the differen-
tial equation it appears in. This can be done by multiplying the original
balance equations with a selection matrix.

� For each row, only a state variable that is multiplied by a non-zero
element (in the multiplication Ω

y
F
x
úx∗ for the speciÞc row) may be re-

moved.

� No state variable that already has been removed can be removed again.

As a result, the following �new� differential and new algebraic equations
are obtained:

P
x
úx = P

x

¡
Az+Br

¢
(6.15)

0 = Ω
y
F
x
P
¡
Az+Br

¢
(6.16)

in which P
x
is a selection matrix which deÞnes which state variables are re-

moved from the original balance equations. These �new� equations togheter
with the original algebraic equations and constraints form an index-1 DAE.
The equations 6.16 are used to compute the unmodelled quantities indirectly.
If you want the unmodelled quantities to be solved directly (i.e. explicitly),
some substitutions and transformations have to be performed.

86 Assumptions: Problems and Solutions

Figure 6.1: Overßowing tank and its physical topology.

Example 6.3: Overßowing Tank

A process consists a mixing tank that ßows over into a second tank
(see Þgure 6.1). The liquid that is fed to the tank system contains
two components (A and B). Suppose that it is difficult to Þnd
a reliable relation that describes the ßow �n2 out of the overßow
tank. Therefore the assumption is made that the liquid level in
the tank is constant (this means that the liquid volume dynamics
are assumed to be very rapid compared to the composition dynam-
ics). The assumption of constant volume is, of course, physically
incorrect (Moe 1995). A physically correct description of the over-
ßow would have included a relation between the liquid level and the
amount of liquid which is ßowing out of the tank. Though practi-
cally, the variation in the volume is hardly ever relevant in these
circumstances and the resulting low index model will be stiff.

For simplicity the density is considered to be constant and in order
to make things visible, sometimes the matrix equations are writ-
ten out as scalar equations (the conversion to the standard matrix
notation is, of course, easily made).

6.3 Index Reduction Algorithms 87

Balance equations:

únA,I = �nA,1 − �nA,2 (6.17)

únB,I = �nB,1 − �nB,2 (6.18)

únA,II = �nA,2 − �nA,3 (6.19)

únB,II = �nB,2 − �nB,3 (6.20)

System equations (same for both systems):

c =
n

V
(6.21)

m = eTMn =MAnA +MBnB (6.22)

V =
m

ρ
(6.23)

Connection equations:

�nA,1 = cA0 �V1 �nB,1 = cB0 �V1 (6.24)

�nA,2 = cA,I �V2 �nB,2 = cB,I �V2 �V2 =?⇒ VI = VI,max(6.25)

�nA,3 = cA,II �V3 �nB,3 = cB,II �V3 �V3 = f(nA,II , nB,II)(6.26)

Where

ni,j :: molar mass of component i in system j
�ni,k :: molar mass ßow of component i through connection k
mi :: total mass of system i
Mi :: molar mass of component i
Vi :: Volume of system i
ci,j :: molar concentration of component i in system j
�Vk :: Volumetric ßow rate of connection k
ρ :: density

The constraint equation (VI = VI,max) constrains the volume and
makes the volume VI of system I no longer state (nor time) depen-
dent. The volume is related to the mass of the system (equation
6.23) and the mass is related to the component masses (equation
6.22). Differentiating the relevant equations results in:

F
y
úy∗ +F

x
úx∗ = 0µ

1
−1

¶
(mI) +

µ
0 0
MA MB

¶µ
nA,I
nB,I

¶
= 0 (6.27)

88 Assumptions: Problems and Solutions

⇒ Ω
y
=
¡
1 1

¢⇒ Ω
y
F
x
=
¡
MA MB

¢
(6.28)

which results in the following additional algebraic equation:

0 =
¡
MA MB

¢µ únA,I
únB,I

¶
(6.29)

= MA�nA,1 +MB�nB,1 −MA�nA,2 −MB�nB,2 (6.30)

Removing one of the states of the original equations (either nA,I or
nB,I) and replacing its differential equation with the new algebraic
relation results in an index-1 DAE, which can be easily solved by a
DAE solver.

Quite obviously, when equation 6.30 is worked out, it will follow
that, in this simple case (constant density), the volumetric outßow
�V2 will be the same as the volumetric inßow �V1 :

0 = (MAcA0 +MBcB0) �V1 − (MAcA,I −MBcB,I) �V2

= (MAnA0 +MBnB0)
�V1
V0
− (MAnA,I −MBnB,I)

�V2
VI

=
m0
V0
�V1 − mI

VI
�V2 = ρ�V1 − ρ�V2

⇔ �V2 = �V1

Note: Very often, similar examples are used in textbooks without
anybody noticing that there is (or was) an index problem related to
the example. This has the following reasons: The total mass bal-
ance and all but one component mass balances (mostly the solvent
is left out) are written down and, without knowing it, no link is
being made between the component masses and the total mass:

úmI = ρ�V1 − ρ�V2
únA,I = �nA,1 − �nA,2
V =

m

ρ

c =
n

V

Making the assumption of constant density and constant volume
results in constant total mass, which easily gives:

0 = ρ�V1 − ρ�V2 ⇒ �V2 = �V1

6.4 Steady-State Assumptions 89

When a modeller is not aware of the fact that the component
masses were not related to the total mass in this case, he could
get into trouble when things get a bit more complicated (for exam-
ple when the density is a function of the mole fractions).

¤

6.4 Steady-State Assumptions

The need for (pseudo) steady-state assumptions may arise for different reasons.
Often the purpose is to either simplify the dynamic behaviour of the system
by idealising components or it is to compensate for information that is not
readily available or difficult to model for other reasons. The idealisation of
components is context-wise related to the subject of singular perturbation.
Since the model is build for a speciÞc purpose, one may choose to ignore the
dynamic effects of certain parts of the system and assume that they are either
extremely slow thus can be approximated as reservoir providing an inÞnite-size
source of matter, energy, etc., or one may make assumptions of instantaneous
dynamics for small-capacity parts.

If one critically analyses models, as they are published in the literature,
one Þnds that such assumptions are omnipresent. In fact they are intrinsically
in the basics as one mostly builds models on the assumption of reversibility,
which does imply that one deals with small capacity elements that move along
trajectories on the equilibrium surface.

One often Þnds problems where two systems of largely different nature
are coupled. For example a �large� system that is connected to a �small�
system. Often the dynamic effects of the small system may be ignored, but
very often too, the small system makes all the difference. Models in which
a phase transition takes place are of this nature in that the phase boundary
separating the two phases is very important when describing the ßow of mass
from one phase to another. This concept may also be applied to time scales,
such as fast and slow systems. For these systems the singular perturbation
theory is applicable. For fast systems a pseudo steady-state assumption is
made:

ε úx= Az+Br (6.31)

which yields

0= Az+Br (6.32)

if ε := 0. The capacity effects of the fast systems are omitted and this reduces
the state of the process because the dynamic equations of this parts are set

90 Assumptions: Problems and Solutions

to zero. The state of a fast capacity becomes a function of the state of its
environment, which mathematically reßects into the elimination of the state.
So, for these fast systems the accumulation terms vanish and, consequently,
the primary state variables are �undeÞned� for these systems. The balance
equations of the fast systems are still valid and are used to calculate �unde-
Þned� variables either directly or indirectly. Quite obviously, an unmodelled
ßow can be calculated directly via a steady-state assumption.

In general, a number of steady-state assumptions that remove n states
result in the following set of algebraic equations (only for the fast capacities):

0 = Az+Br (6.33)

y = f(x) (6.34)

z = g(y,y
e
) (6.35)

r = h(y) (6.36)

from which n variables (either ßow rates (z), reaction rates (r) and/or states (x
or y)) can be calculated (less variables can be calculated when index reduction
algortihms affect the steady-state balance equations (see example 6.6)). In this
set the y

e
represent the (secondary) states of the environment systems (i.e.

systems that are connected to the steady-state systems) and are the �driving
forces� of the algebraic equations. A bipartite graph analysis (Duff and Reid
1986) could provide the means for Þnding the different sets of variables that
can be computed from this set of algebraic equations. Normally, though,
each steady-state assumption can be handled locally and it is clear for which
variables the equations are solved.

Example 6.4: Calculation of Unmodelled Flow

Figure 6.2: Physical topology of simple process

Three systems are interconnected via heat connections. The en-
thalpy balance of the middle system (2) of Þgure 6.2 is:

úH = �q1 − �q2 (6.37)

If the second ßow (�q2) remains unmodelled, then a steady-state
assumption (on system 2: úH := 0) can be made to calculate this

6.4 Steady-State Assumptions 91

ßow via the balance equation:

�q2 = �q1 (6.38)

If there would have been no inlet ßow to system 2 and a steady-
state assumption is made, this would, of course, result in no ßow
through connection 2 (i.e. �q2 = 0).

¤

As mentioned, the steady-state assumption essentially makes the state of
a system a function of the state of its environment. The state of the environ-
ment can thus be used to �redeÞne� the (secondary) state (i.e. the intensive
quantities) of the system.

Example 6.5: Calculation of State of a Steady-State System

Consider Þgure 6.2 once again. The heat ßows through the con-
nections 1 and 2 are now deÞned as functions of the temperatures
of the interconnected systems:

�q1 = U1A1(T2 − T1) (6.39)

�q2 = U2A2(T3 − T2) (6.40)

If a steady-state assumption is made for system 2, the primary
state of the system is eliminated and, consequently, also the sec-
ondary state, because this results from a mapping from the primary
state. The temperature T2 of system 2 is now deÞned as a function
of the states of the environment (T1 and T3) and can be calculated
from the balance equation of this system:

0 = �q1 − �q2 (6.41)

⇔ T2 =
U1A1T1 + U2A2T3
U1A1 + U2A2

(6.42)

Note: When one or both ßows remain unmodelled, the balance
equation of system 2 is effectively removed from the model by ap-
plying the Simple Index Reduction Method. The introduced con-
straint (e.g.: T2 = T1 and/or T2 = T3) equations are then used to
calculate T2.

¤

92 Assumptions: Problems and Solutions

The two examples showed that a steady-state assumption can be used
to either calculate an unmodelled ßow (or reaction) directly or calculate the
(secondary) state of the system, that is redeÞned by its environment. Both
possibilities do not lead to index problems, since the states are removed di-
rectly form the model description. These two possibilities can, however, not
be mixed, because one would run into mathematical problems. If, for exam-
ple, the inlet ßow (�q1) is deÞned as in equation 6.39 and we wish to calculate
�q2 via a steady state assumption, there would be a problem because there is
no information on the temperature T2. When the steady-state assumption
calculates the state of a system, then at least one of the connections must, of
course, reference this state. Otherwise the resulting set of equations will be
inconsistent and it will not be possible to calculate the state.

Conceptional difficulties arise when a steady-state assumption reduces a
system that is connected with more than two connections that remain unmod-
elled (and for which no constraint equations are given). In these cases, one of
the ßows is calculated via the steady-state assumption and the other ßows are
deÞned as a function of the calculated ßow. So, in these cases, some ßows can
be a function of another ßow and not, which is the general case, of the state
variables of the connected systems.

Mass may be exchanged between two phases, each of which is in a different
state of aggregation. Mass crossing the boundary thus changes state of aggre-
gation. DeÞning the phase boundary as a thermodynamic wall localises the
mechanics associated with the phase change into the boundary. The bound-
ary is assumed to be a surface and has thus no volume. Consequently, no
fundamental extensive quantity is accumulated in the boundary itself: the
ßow of extensive quantity entering the surface from one side must balance the
ßow leaving the surface on the other side. Clearly, the two systems cannot be
simply connected with a connection, since connections are idealised transport
systems in which no reactions occur and a phase change is a reaction. There-
fore, phase boundaries are approximated with steady-state systems, in which
the two phases coexist and where the phase change takes place.

This phase boundary concept can, of course, be further expanded to phase
boundaries where no state of aggregation change or reaction takes place. In
these cases, the transfer of a component from one phase to another can be
viewed as a �pseudo reaction�. At the phase boundary, the transferred com-
ponent acts as two �different� components - one at each phase - that interact
with each other.

Example 6.6: Phase Equilibrium

Consider a process that consists of two phases (phase I and Phase
II). In each phase component A is dissolved and the transfer from

6.4 Steady-State Assumptions 93

the bulk phase to the phase boundary is fast. Also, the transfer
from one phase to another is considered to be fast. When the
phase boundary is represented by a steady-state system a physi-
cal topology similar to the one shown in Þgure 6.2 will result. The
component mass balances for component A can be easily derived
from this topology (keeping in mind that, at the phase boundary,
this component will act as two �different� components):

únA(I),1 = −�nA,1 (6.43)

únA(I),2 = �nA,1 − ξ (6.44)

únA(II),2 = −�nA,2 + ξ (6.45)

únA(II),3 = �nA,2 (6.46)

where,

nA(i),j :: Molar mass of component A in phase i at system j
�nA,k :: Molar mass ßow of A through connection k
ξ :: Conversion rate of A from phase I to phase II

The following assumptions are made:

� ßows are fast. Constraint equations:
cA(I),1 = cA(I),2 (6.47)

cA(II),3 = cA(II),2 (6.48)

with
cA(i),j :: Molar concentration of component A in

phase i at system j

� �reaction� is fast:
cA(I),2 = kcA(II),2 (6.49)

� steady-state assumption for system 2:

únA(I),2 = 0 (6.50)

únA(II),2 = 0 (6.51)

Applying the Simple Index Reduction Mechanism results in:

únA(I),1 + únA(II),3 = 0 (6.52)

cA(I),1 = cA(I),2 (6.53)

cA(II),3 = cA(II),2 (6.54)

cA(I),2 = kcA(II),2 (6.55)

94 Assumptions: Problems and Solutions

Note 1: Since the steady-state balance equations are effectively
removed by the application of the Simple Index Reduction Method,
these equations are no longer required to compute unknown quanti-
ties. So, when k unmodelled quantities, that appear (once or twice)
in l steady-state balance equations, are removed by applying an in-
dex reduction method, then l-k (or zero if k > l) �unknown� quan-
tities can be computed with the remaining equations. The unknown
quantities of the steady-state system are now effectively calculated
via the imposed constraints.

Note 2: In this case, the same results would have been obtained
when the systems 1 and 3 would have been connected via a sin-
gle connection (with system 2 not being present). If a fast ßow
assumption would be made (e.g. cA,1 = kcA,3), mathematically
the same model would result. The former case is, however, more
general and can be easily extended to multiple connections.

¤

6.5 Events and Discontinuities

In this work, the dynamic behaviour of a process is abstracted to the point
at which it can be represented by the smooth, continuous change of a series
of state variables. This allows such a process to be represented mathemati-
cally as a set of DAEs. The majority of processes, however, cannot be con-
sidered entirely continuous, but also experience signiÞcant discrete changes
or discontinuities superimposed on their predominantly continuous behaviour
(Barton 1992). Such discrete changes, often referred to as events, can ei-
ther be planned changes, called time events (for example, planned operational
changes, such as start-up and shut-down, feed stock and/or product changes,
process maintenance, switching a valve) or non-planned changes, called state
events (overßow of a tank, (dis)appearance of a phase, inversion of a ßow).

The exact time of occurrence of time events is either known a priori or
it can be computed from the occurrence of a previous event. The time of
occurrence of state events is not known in advance because it depends on the
system fulÞlling certain state conditions.

In addition to the two types of events we can classify events in an other way,
namely in events that do not change the (dynamic) model structure and events
that change the (dynamic) model structure. With events that do not change
the model structure, the balance equations are not altered, but some algebraic
equations are changed. This usually results in a non-smooth continuation of
the primary state variables.

6.5 Events and Discontinuities 95

Example 6.7: Tank with Fast and Equilibrium Reaction

Consider a tank with an inlet (consisting of two components A
and B) and an outlet. The contents of the tank consist of four
components (A,B,C and D) among which two fast reactions occur,
namely:

A+B → C (6.56)

A À D (6.57)

The Þrst reaction (6.56) is a very fast, one way reaction. This
means that there is no measurable inverse reaction and one of the
two components A or B will always be completely consumed (i.e.:
nA = 0 or nB = 0). The other reaction (6.57) is an equilibrium
reaction, which means that there will always be a certain ratio be-
tween components A and D (cA = k ∗ cD). Because both reactions
are fast in the context of the viewed time scale, the reaction terms
that appear in the balance equations can be removed be using the
Simple Index Reduction Algorithm.

Figure 6.3: Simulation of a tank in which a fast and an equilibrium reaction
take place.

Figure 6.3 shows the result of a simulation of the tank. In this
Þgure we can see three events taking place. At the start of the

96 Assumptions: Problems and Solutions

simulation there is an excess of A in the tank, which means that
there will be no B, since all B that is available directly reacts with A
to form C. The inlet ßow contains more B than A and this results
in diminishing quantities of A (and, consequently, D) in the tank
until the amount of A (and D) in the tank reaches zero. At this
point we encounter the Þrst event, for now there will be an excess
of B available in the tank and A (and D) will be non-existent.

At a certain point in time the input is changed such that the inlet
ßow will contain more A than B. A second event is the result. The
amount of B will decrease until is reaches zero. This will initiate
the third event, such that A (and D) will be present again.

Obviously, the Þrst and last event were state events, while the sec-
ond event was a time event.

¤

With events that change the (dynamic) structure of the model, not only
algebraic equations are altered, but also (parts of) the dynamic balance equa-
tions, because the events trigger certain index problems. This means that the
number of differential variables will increase or decrease after the event has
occurred. Examples of these events are a tank that suddenly overßows (when
the overßow is modelled with a constraint (constant volume of the contents),
the number of differential variables will have to decrease, due to the introduced
index problem), a suddenly starting (or stopping) equilibrium reaction or a
system that runs empty. This type of events can cause jumps in the primary
state variables, although it usually does not.

Example 6.8: Tank of Small Diameter

This example shows what kind of problems may arise when a system
is discretised into a set of interconnected subsystems.The physical
topology of a tank with a small diameter is considered to consist of
four interconnected systems, each with a maximum volume of Vmax.
The volumetric outlet ßow (�V5) is a function of the height (c.q.
the pressure) of the liquid in the tank. The height is a �composite�
quantity because it is derived from the sum of volumes of the four
systems.

If the tank is almost full (i.e. VII = VIII = VIV = Vmax), the ßow
rate through connection 2 can be calculated by making the �as-
sumption�: VII = Vmax, and subsequently applying the Full Index
Reduction Method. Similarly the ßows of connections 3 and 4 can
be calculated. (The result will, of course, be that all these ßows are
equal to the outlet ßow if constant density is assumed).

6.5 Events and Discontinuities 97

Figure 6.4: A tank with small diameter and a possible physical topology.

A problem arises when system I becomes completely empty. The
assumption that VII = Vmax is no longer valid, because VII < Vmax
and VI = 0. The liquid no longer accumulates in system I and the
states of system I become obsolete. The ßow through connection
2 will now be calculated by making a steady-state assumption over
system I. (The result will be that the ßow through connection 2
equals the ßow through connection 1). This event will remove the
states of system one and also the Full Index Reduction on system II
will have to be �undone�, because connection 2 no longer constrains
this system. The mathematical description for connection 2 will be
as follows:

�n2 :

VI > 0 : VII = Vmax

(calcutate �n2 via Full Index Reduction)
VI = 0 : únI = 0

(calculate �n2 via Steady-State Assumption)

Clearly, the dynamic structure of the model changes when the event
occurs. The handling of events that change the dynamic structure
of the model by (numeric) solvers is far from trivial and goes be-
yond the scope of this thesis.

¤

Whatever type of event, there will always be some kind of discontinuity
or �non-smoothness� in the DAE. To solve DAEs with discontinuities success-
fully, the time integration has to be stopped at the discontinuity and restarted

98 Assumptions: Problems and Solutions

with new consistent initial conditions (Majer and Gilles 1995). These consis-
tent initial conditions can usually be quite easily found from the conditions
of the process just before the event occurred. In many cases (especially when
the dynamic model structure is not altered) the �new� initial conditions are
actually the same as the conditions just before the event and it will often not
be necessary to stop and restart the time integration.

6.6 Variables and Algebraic Equations for Compos-
ite Systems

Sometimes it is convienient, or even necessary, to introduce variables and
algebraic equations for composite systems. In the last example of the previous
section a �composite� quantity was, for example, introduced to describe the
height of the liquid in the tank. In this case this height was used to calculate
the magnitude of the outlet ßow.

Composite variables are deÞned via algebraic relations as a function of the
variables of the subsystems. In the case of extensive quantities, the composite
variable will, obviously, be the sum of these quantities of the subsystems, since
the physical topology is deÞned as a strictly hierarchical multiway tree.

When the composite variables are just deÞned and used, no mathematical
problems will arise, since the new variables are deÞned using already deÞned
variables. When, however, a composite variable is constraint (for example: the
assumption that the volume of a composite system is constant), mathematical
problems could arise. Two cases can be distinguished:

� All used variables of the subsystems are directly or indirectly related to
their primary state variables and the composite variable holds a con-
straint. In this case an index problem arises, which will have to be dealt
with using either the Simple or the Full Index Reduction Method. As
with other high-index cases, there has to be an unmodelled ßow (or
reaction) which makes the application of the index reduction method
possible.

� The composite variable is used to calculate a variable of one of the sub-
systems. When the composite variable is constraint and all but one of the
used variables is properly deÞned in the subsystems, then the composite
equation can be used to calculate the remaining variable. Consider, for
example, a tank in which a liquid and a gas phase are present and which
has an inlet and an outlet ßow. The volume V of the tank is Þxed. The
volume of the liquid VL can be calculated from the liquid mass. The
remainder part of the tank that is not occupied with liquid is the vol-
ume that is occupied by the gas phase (VG = V − VL). In these special

6.7 Summary and Conclusions 99

cases, a variable of a subsystem is calculated using state information of
other subsystems. This solution will not result in an index problem, but
the computational causality (this subject is discussed in more detail in
section 10.3) of the involved variables and equations should be carefully
considered in these cases.

Note: Strictly speaking we are not talking about a simulation problem
in these cases, since the calculated variable (VG in our example) of the
subsystem is not directly related to the primary state variables (the mass
of the gas phase). The deÞnition mG = ρGVG could, in this case be used
to �identify� the density ρG (parameter identiÞcation).

6.7 Summary and Conclusions

This chapter showed that assumptions that �simplify� the process description
very often lead to computational difficulties. Luckily, since the assumptions
are usually introduced locally, the imposed problems stay local and can also be
solved locally. The following list summarises the assumptions a model designer
can make during the development of a process model:

� Unmodelled ßow ⇒ High index process model.

Solutions:

� Introduce a constraint that directly or indirectly inßuences primary
state variables and apply the Simple Index Reduction Method.

Result: The unmodelled ßow is removed from the model descrip-
tion by making linear combinations of the balance equations. The
index and dimension of the model will decrease.

� Introduce a constraint equation and apply the Full Index Reduction
Method.

Result: The index and dimension of the model have decreased
because some states have been removed and the ßow is calculated
from �new� equations, which are generated from combining some
balance equations with differentiated algebraic equations.

� Apply a steady-state assumption to one of the connected systems.

Result: The dimension of the model is reduced because the states
of the steady state system have been removed and the ßow is cal-
culated via the balance equations of the steady state system.

100 Assumptions: Problems and Solutions

� Unmodelled reaction ⇒ High index process model.

Solutions:

� Introduce a constraint that directly or indirectly inßuences primary
state variables and apply the Simple Index Reduction Method.

Result: The unmodelled reaction is removed from the model de-
scription by making linear combinations of the balance equations.
The index and dimension of the model will decrease.

� Introduce a constraint equation and apply the Full Index Reduction
Method.

Result: The index and dimension of the model have decreased be-
cause some states have been removed and the reaction is calculated
from �new� equations, which are generated from combining some
balance equations with differentiated algebraic equations.

(-) Apply a steady-state assumption to the system in which the reac-
tion is taking place.

Result: The dimension of the model is reduced because the states
of the steady state system have been removed and the reaction is
calculated via the balance equations of the steady state system.

Note: This is in general not possible, because usually the number
of removed states is larger than the number of unmodelled reactions
that have to be calculated. The assumption must therefore be par-
tially used to calculate some other unmodelled quantities and this
is most of the time not trivial.

� Steady-state assumption ⇒ Reduces the dimension of the model.

A number of unmodelled quantities (either ßows, reactions or secondary
state variables) equal to the number of removed states have to be calcu-
lated from the steady-state balance equations.

A major advantage of this classiÞcation of assumptions is that it is very
easy to do the book keeping. An automatic documentation of all assumptions
that are made during the model development is the result. All assumptions
become very easily retractable and changeable.

In all cases, the introduction of a �simpliÞcation� leads to a reduction
of the dimension of the original model and therefore to a model reduction.
Many simpliÞcations are solved by an index reduction which leads to a model
reduction. Index reduction and model reduction are, however, not the same
thing. The purpose of an index reduction is to transform the model such that
a model results that can be solved by problem solving software. The goal of

6.7 Summary and Conclusions 101

model reduction is to simplify the model description such that a (much) faster
and simpler code is formed that still represents the actual process behaviour
with acceptable accuracy. So, although index reduction is a model reduction
method, model reduction is certainly more than just index reduction. This
work was not concerned with model reduction, but with the construction of
consistent dynamic process models.

102 Assumptions: Problems and Solutions

Part II

Implementation

103

Chapter 7

Introduction to
Implementation

Solving process engineering without the help of computer-based tools is for
almost any problem an unthinkable proposition. Process simulation, process
design, controller design, controller testing, data acquisition and model iden-
tiÞcation, parameter Þtting, valve and pump selection, column sizing are just
a few examples taken from a very large catalogue of chemical plant related
operations that are almost exclusively done with computer-based tools. Con-
sidering the fact that multiple solutions to individual problems are available
from different sources such as software houses or supplier companies, the cat-
alogue of tools is rather large. A process engineer, who is more and more
involved in the integrated design of processing plants, is thus faced with a
multitude of different software tools, which he uses more or less frequently
depending on his allocation. Since each of these packages has been developed
in isolation, each has a different interface and applies to different problems
though the tools may be used to solve problems associated with the same
plant.

Often the software is very complex and needs a specialist to deÞne and run
problems. Data transfer between tools is not standardised and requires special
arrangements or add-on�s. All features which do not enhance team work and
productivity.

The key to improving efficiency is an increased use of common process
information and effictive exchange of data, models and information between
the applications.

During my research period I have developed a computer tool, called the
Modeller, based on the ideas and concepts which are described in the previous
chapters. The Modeller is a computer-aided modelling tool to interactively
deÞne and modify process models. It aims to effectively assist in the develop-

105

106 Introduction to Implementation

ment of these process models and facilitate hierarchical modelling of process
plants through a user friendly interface.

TheModeller constructs the process models from primitive building blocks,
being simple thermodynamic systems and connections, as discussed in section
3.1. It does not, in distinction to existing ßow sheeting packages, build on unit
models. The Modeller generates symbolic models in the form of differential-
algebraic equations consisting of component mass and energy balances, aug-
mented with transfer laws, physical and geometrical property relations and
kinetic laws. In this part the implementation of the modelling method in the
computer-aided modelling tool the Modeller is discussed.

This part starts with describing the construction and manipulation of phys-
ical topologies (chapter 8) for PCB processes with the aid of the Modeller. A
special graphical user interface has been developed (and implemented) to han-
dle physical topologies of arbitrary complexity. With the modelling tool, the
physical topology of a process can be built using two main operations, namely
reÞning an existing system (the top-down approach) or grouping systems (the
bottom-up approach).

The next chapter discusses how one can construct and manipulate the
species topology of a physical topology, using the Modeller. The deÞnition
of the species topology is initialised by assigning sets of species and reactions
to some elementary systems. To aid in this deÞnition, species and reaction
databases are used. The user may also specify the permeability (i.e. selective
transfer of species) of individual mass transfer connections. The distribution
of the species over all systems is automated and uses the facts that assigned
species can propagate through permeable mass connections and species may
generate �new� species (via reactions), which in turn may propagate and ini-
tiate further reactions.

Finally, the implementation and handling of variables and equations, which
constitute the generated models, is discussed. With the information on the
physical and species topology Modeller can automatically generate balances
of fundamental extensive quantities (component mass, energy and momen-
tum) of every elementary system. In order to fully describe the behaviour
of the process, the ßow rates and production rates involved in the balance
equations need to be speciÞed. So, in addition to the balance equations other
relationships are needed to express thermodynamic equilibria, reaction rates,
transport rates for heat, mass, momentum, and so on. A model designer can
select a particular relationship from a set of alternatives and connect the se-
lected relationship to a balance equation or to another deÞned relationship.
In this way, each term in a balance equation can be expanded by deÞning it
as a function of some quantities, which in turn may be expanded again and
again. The resulting set of equations (the output of the modelling tool) forms

7.1 Implementation Details 107

a mathematical representation for the behaviour of the process in a speciÞc
form, which could serve as an input for problem solving tools.

7.1 Implementation Details

This part, Implementation, mainly describes how the implementation works
and not how it was implemented. Although the actual implementation re-
quired a lot of work and was far from trivial, I do not consider the imple-
mentation details to be an important contribution to this thesis. Elaborating
on these details would certainly not aid in the overall understanding of the
modelling methodology and its implementation for most of the readers. I do
wish to mention something on the actual implementation and especially on
some of the low-level modules I have written, since these form the basis for
the entire program.

The software tool, the Modeller, was implemented using the BlackBox
Component Builder 1.4 (http://www.oberon.ch). The BlackBox Component
Builder is an integrated development environment optimised for component-
based software development. It consists of development tools, a library of
reusable components, a framework that simpliÞes the development of robust
custom components and applications, and a run-time environment for compo-
nents.

In BlackBox, the development of applications and their components is done
in Component Pascal. This language is a descendant of Pascal, Modula-2, and
Oberon (PÞster and Szyperski 1994). It provides modern features such as ob-
jects, full type safety, components (in the form of modules), dynamic linking of
components, and garbage collection. The entire BlackBox Component Builder
is written in Component Pascal: all library components, all development tools
including the Component Pascal compiler, and even the low-level run-time
system with its garbage collector. In spite of its power, Component Pascal is
a small language that is easy to learn and easy to teach.

When building or manipulating process models, the construction and ma-
nipulation of an earlier step has great inßuence on the construction and com-
position of the later steps. Manipulating later steps will have no inßuence on
the composition of earlier steps and will therefore not alter the entered infor-
mation of these steps. In implementation terms this means that an earlier step
should not know about later steps. So, a tool which constructs only a physical
topology should have no knowledge of species, variables or equations. A tool
which implements the construction of a species topology must have knowledge
about the physical topology but not of variables and equations.

108 Introduction to Implementation

When the different steps are implemented in different components, actions
taken on one speciÞc step can be clearly separated from actions taken on
another step. A clear separation of the different modelling steps can make
operations such as error detection and implementation of new procedures in
speciÞc steps a lot less time consuming.

The program, theModeller, is build from several modules, which all handle
certain aspects of the implementation The main modules of the program are
very applicably called CamPhysTops, CamSpecTops and CamEqTops.
On top of these modules other modules are implemented, which handle the
graphical user interface (GUI), graphical representation, man-machine inter-
action, etc.

To form a Þrm basis on which the entire program could be build, a few
general purpose, low-level modules were written. The two most important of
these general purpose modules were named CamTools and CamLists.

The module CamTools forms the foundation for undoable and redoable
operations. This module uses the implementation of the original BlackBox
undo/redo mechanism in such a way that more than one operation can be
undone or redone within one call. Appendix A gives the interface deÞnition of
the module CamTools and explains how the undo/redo mechanism works.

The module CamLists deÞnes the data types List and ListReader,
which can be used to handle all kinds of operations that involve lists. Any
storable object can be added to a list. All manipulations to a list (adding
and removing objects) which alter the contents of the list are implemented
as operations. This means that all manipulation actions are undoable (and
redoable).

Module CamPhysTops deÞnes all the basic tools and operations that
are needed to construct physical topologies. The module deÞnes the types
System and Connection, which are the two primitive building blocks for
the construction of physical topologies. Type PhysTop represents physical
topologies, consisting of systems and connections. It provides all the opera-
tions and procedures needed to construct physical topologies.

A physical topology can be extended by laying, for example, a species
topology or a variable topology on top of this physical topology. Also, different
graphical representations of the same physical topology could be implemented.
Type Extension implements the procedure HandleModification which
handles all the modiÞcations made to the physical topology. An extension of
the physical topology may implement this procedure to react to changes made
in the physical topology. For example, a graphical representation (or a species
topology) has to update its data when a system is added or removed. An
extension can associate an attribute with every system and every connection
of the physical topology. In this way, information of an extension that belongs
to a speciÞc system (or connection) is carried by this system (or connection).

7.1 Implementation Details 109

An attribute carries speciÞc information of a speciÞc system or connection.
This information should, of course, be related to the extension to which the
attribute belongs. A graphical attribute (related to a graphical extension)
of a system, for example, could contain information on the location of this
system on the screen. Every system and every connection can only contain
one attribute of a speciÞc extension. This means that every extension can
deÞne two attributes: one for systems and one for connections.

The graphical user-interface of the Modeller only contains two main ele-
ments. These are the model windows in which the physical topologies of the
different models can be constructed and a properties toolbox, which displays
the properties and information of the selected object(s) or of the entire model
(when no selection is made). The properties toolbox is fully context depen-
dent, which means that if the selection is changed, the properties toolbox will
immediately addapt and show the properties of the new selection. In this way
it is always clear on which object(s) certain actions are performed.

110 Introduction to Implementation

Chapter 8

Construction of the Physical
Topology

The construction and manipulation of the physical topology in an easy and fast
manner, without compromising on the consistency of the process models, is
one of the primary objectives of the computer-aided modelling tool Modeller.
The tool should therefore allow for any structural change in any order. In
this section the basic operations one can perform on a physical topology are
discussed.

8.1 Handling Complexity

Elementary systems and connections are the primitive building blocks for con-
structing a mathematical model for a process. A (correctly deÞned) connection
is always deÞned between two elementary systems. Thus, a network consisting
of elementary systems and connections has a ßat structure from a topological
point of view. To aid in the handling of large and complex processes, the phys-
ical topology is organised in a strictly hierarchical multi-way tree. This means
that the systems can be hierarchically grouped in composite systems, such
that groups of components can be addressed. So, an additional tree structure
is introduced, which is laid over the �ßat� physical topology.

The visualisation of larger processes can still get rather complicated. The
overall model of a large process could easily outgrow the screen and one could
easily lose grasp of the whole process, especially if one would only show the
ßat topology. This implies that we have to Þnd a representation of the tree
that only shows one speciÞc part of the tree with detail. The rest of the model
should be shown with very little detail. We should keep in mind, though,

111

112 Construction of the Physical Topology

Figure 8.1: Example of a �ßat� physical topology.

that we always want to show the complete thermodynamic universe, i.e. the
complete process.

Figure 8.2: Tree structure representation of a process, without showing the
connections

A generic approach to this problem is to associate the view with the nodes
of the tree. In this approach we limit the graphical display of a process to
two successive hierarchical layers. One (composite or primitive) system is
chosen as the �displayed� system, here called the focus system (Westerweele
1999). This splits the overall model into two parts; the focus system and
its environment. The focus system shows its subsystems (if it has any) in a
frame. The environment systems of the focus system are displayed outside
this frame. The following example illustrates what this means in terms of
graphical representation:

8.2 Unique System IdentiÞers 113

Example 8.1: Visualisation of a Process

Figure 8.3: Graphical representation of the tree with system 1 as the focus
system. The connections between the systems are not shown.

Consider a process that can be hierarchically decomposed in a tree
of systems as represented in Þgure 8.2. The complete process,
which is modelled as a thermodynamic universe, is represented by
the root node. The root node is composed of three subsystems, �1�,
�2� and �3�. These three systems together also represent the com-
plete process. So, if we chose system �1� as the focus system, we
can graphically represent the whole thermodynamic universe c.q.
the complete process by showing only the three subsystems. Figure
8.3 shows that graphical representation. The systems �1.1�, �1.2�
and �1.3� build up the focus system �1� and are therefore located in-
side the window frame which constitutes the focus system. In order
to represent the complete process, the systems �2� and �3� have to
be shown as environment systems of system �1�. These systems are
drawn outside the focus system window, because they are not part
of the focus system. In this way the whole process is graphically
represented by showing one system (the focus system) in detail,
and the rest of the process (the environment systems of the focus
system) with little detail.

¤
The example shows that in this hierarchical representation of systems,

information about the structure of the lower levels is hidden.

8.2 Unique System IdentiÞers

It is possible to give each system (either composite or primitive) a name, such
that a model designer can keep an overview. To help the model designer

114 Construction of the Physical Topology

with the handling of complex processes, a unique label c.q. identiÞer for each
system is introduced. An example of these unique identiÞers is already shown
in the Þgures 8.2 and 8.3. The deÞnition of a hierarchical tree of identiÞers
facilitates a notation for the representation of an arbitrary hierarchical system.
The described tree structure does not impose any limitations on the depth of
the tree nor on the number of branches from each node. Every node is uniquely
labelled by an identiÞer.

Each identiÞer consists of a sequence of numbers, which are the branch
numbers that must be chosen to arrive in the node being identiÞed, starting
at the root node of the tree. So, a node identiÞer uniquely describes the
location of the node in the tree.

In the Modeller, the root node of a process is always indicated with �0� or
�Top Level�, because this node represents the thermodynamic universe. The
Þrst subsystem of the root is always identiÞed by �1�, the second by �2�, etc.
The Þrst system of the third subsystem of the root will be labelled �3.1�. The
Þrst subsystem of the latter will have �3.1.1� as identiÞer, etc., etc.

The node identiÞers are thus algebraically constructed by concatenating
the consecutively chosen branch numbers. The �deeper down� a node is located
in the tree, the �larger� its identiÞer will be (or the more numbers its identiÞer
will comprise). Whenever the (tree structure of the) physical topology of a
process is altered, the Modeller will update all identiÞers of the systems that
were inßuenced. In this way the identiÞers of the systems (nodes) won�t loose
their meaning and the systems identiÞer still describes the location of the
system in the tree.

8.3 Basic Tree Operations

A physical topology is organised as a strictly hierarchical tree. This tree can be
built using two main operations, namely by either reÞning an existing system
(the top-down approach) or by grouping systems (the bottom-up approach).
The operations that are used for the reÞning and grouping, and some other
operations that are necessary for the manipulation of the physical topology
will be discussed with the aid of simple examples. The examples will illustrate
the inßuence of the operations on the tree structure and on the graphical
representation of the tree.

� Adding an Elementary System.
When constructing a physical topology for a process, one of the most
important operations is of course the adding of new systems. A new
elementary system is always inserted as an elementary system with a

8.3 Basic Tree Operations 115

user deÞned name. The new system will be inserted as a subsystem of
the focus system. As a rule a new system is always added to the right
of the existing subsystems (if any) of the focus system. If the focus
system does not have any subsystems yet, it is still a simple or primitive
system. The insertion of a new system will turn the focus system into a
composite system with one subsystem.

Figure 8.4: Adding a new system

� Selecting Systems
For a number of operations, such as deleting, moving, grouping, drag-
ging and copying, it is necessary to have the facility of selecting systems.
When grouping or copying, only subsystems of the focus system (i.e.
internal systems) can be selected for reasons of keeping the (tree) repre-
sentation consistent.

� Removing Selected Systems
Any system, composite or elementary, can be removed from a tree. Af-
ter the selected systems have been removed, the system identiÞers will
be automatically updated. Care should of course be taken when one
removes one (or more) composite systems, because all the subsystems of
that composite system will also be removed and the information of this
part of the tree will be lost.

116 Construction of the Physical Topology

Figure 8.5: Removing systems.

� Grouping Selected Systems

Figure 8.6: Grouping systems

As the number of subsystems in a system increases, the management

8.3 Basic Tree Operations 117

of the subsystems is likely to become easier by grouping a set of those
subsystems and introducing an intermediate system to represent them.
This operation is called grouping. The grouping operation can be de-
Þned by a series of previously discussed operations. First we select the
subsystems of the focus system that we want to group. Then the se-
lected systems are removed and a new system is inserted to the right
of the remaining subsystems (if any). The removed systems are Þnally
reinserted, but now with the new system as their parent system. Group-
ing systems does not alter the (ßat) physical topology of the process. It
is merely a matter of convenience and management of the hierarchy.

� Degrouping a System

Figure 8.7: Degrouping a system.

The degrouping operation is the inverse of the grouping operation. In
this case an intermediate system, i.e. the system that is going to be
degrouped, is removed after the subsystems of that intermediate system
have become subsystems of the intermediate systems parent. Elementary
systems can, of course, not be degrouped, because they do not have any
subsystems.

� Copying or Saving Selected Systems
The selected systems can be copied. This operation makes an exact
copy of the selected elementary and/or composite systems, and stores

118 Construction of the Physical Topology

them in a buffer. For reasons of compatibility and consistency, only a
set of systems that are subsystems of the focus system can be copied
(or selected for copying). The saving of the selected systems is basically
the same operation as the copying, with the difference that the systems
are now stored on a disk, so that they can be used any time for the
construction of any physical topology.

Figure 8.8: Copying/exporting systems

� Pasting Copied or Imported Systems

Figure 8.9: Pasting/Importing Systems

The pasting of copied or (from disk) imported systems is an operation
that is very similar to the insertion of a new system. The paste operation

8.4 Representation of Connections 119

adds the systems which are stored in the buffer or on disk as subsystems
of the focus system. Again the rule applies that �new� systems are
always added to the right of the existing subsystems.

� Moving a System

Figure 8.10: Moving a system within the tree structure.

Sometimes it is necessary to move a system within the tree structure.
The new parent of the system can be any system of the tree that is not
a subsystem of the system that is moved.

After each operation the identiÞers of all the systems that were inßuenced
by the operation, are updated.

8.4 Representation of Connections

The graphical representation we employ to represent a hierarchical tree does
not show every part of the model in detail. Most parts of the model are shown
with very little detail, hiding the structure of their lower levels. Consequently,
not every connection will be visible in this representation. Only connections
which have an origin and/or target that is a subsystem of the focus system, will
be displayed. Connections between two environment systems are not shown for
reasons of surveyability. With this approach, we can distinguish between two
�classes� of graphical connections, namely internal and external connections.

120 Construction of the Physical Topology

An internal connection is a connection between two systems that are both
subsystems of the focus system. An external connection has one system as
origin or target which is not a subsystem of the focus system.

Connections are deÞned between two elementary thermodynamic systems,
but in our representation it is not always possible to show both of these sys-
tems at the same time. Therefore, it is necessary to introduce �(graphical)
connections� between composite systems. What this means will become clear
in the following sections.

8.4.1 Making a New Connection

A correctly deÞned connection is always deÞned between two elementary sys-
tems. If a model designer wishes to generate a new connection, he must Þrst
deÞne the type of connection he wishes to generate. In other words, the mod-
eller must deÞne what kind of extensive quantity will be transferred through
the new connection. For now the choices are limited to: a mass, heat or work
connection (and information connections for the �transfer� of information).
Then he must select a system that will serve as the origin of the connection
and, subsequently, he must select a target system.

For ease of establishing a connection, the modelling tool automatically
invokes a zoom-in operation upon the selection of a composite system as either
origin or target system. This means that the selected composite system will
be set as focus system and the model designer can select a subsystem of this
system. This is done because a connection always has to be deÞned between
elementary systems.

8.4.2 Graphical Representation of Connections

The graphical representation of connections is best explained with the aid of
a simple example.

Example 8.2: Graphical Representation of Connections

Consider a process for which the tree structure representation is
deÞned as in Þgure 8.2. Let the following connections be given
between the elementary systems (see Þgure 8.11a; see Þgure 8.1 for
a ßat topology of this example process):

8.4 Representation of Connections 121

Connection number Origin System Target System

1 1.1 1.3

2 1.1 1.2.1

3 1.2.1 1.2.2

4 2 1.3

5 1.2.2 3.1

6 3.2 2

7 1.3 3.2

If we take system 1 as the focus system these connections will be
graphically represented as shown in Þgure 8.11b.

Figure 8.11: a. Tree structure with connections between elementary systems.
b. Graphical representation with system 1 as the focus system.

The following remarks can be made concerning these connections
and their representation if system 1 is the focus system:

� Connections �1� and �2� are both internal connections of sys-
tem 1 (and are both external connections of system 1.1). Con-
nection �1� is shown as a connection between two elementary
systems. For connection �2� this is not possible, because the
target of the connection (the elementary system 1.2.1) is not
displayed on the screen. The connection is therefore displayed
as a connection between the elementary system 1.1 and com-
posite system 1.2, for system 1.2.1 is a subsystem of system
1.2.

� Connection �3� is an internal connection of the system 1.2 and
is not displayed on the screen because both the origin and the
target of this connection are subsystems of system 1.2. If one
wants to show this connection on the screen, one must zoom

122 Construction of the Physical Topology

in on system 1.2 (and set this system as the focus system).
So, only internal connections of the focus system are shown
on the screen. Internal connections of any other system are
always hidden.

� Connections �4�, �5� and �7� are external connections of the
focus system 1, because these connections cross the boundary
of system 1.

� Connection �6� is not shown in this representation, for this
connection is established between environment systems of the
focus system 1.

Figure 8.12 shows the graphical representation of the process with
the tree root as the focus system.

Figure 8.12: Graphical representation with the tree root as the focus system.

Remarks:

� As you can see, a problem arises here, for connection �5� and
�7� are both deÞned between the (composite) systems 1 and
3. In the graphical representation it is displayed as only one
connection �X�, while it in fact is a �composite� or �mul-
tiple� connection, consisting of the connections �5� and �7�.
In this way an arbitrary number of connections between two
(elementary or composite) systems can be deÞned and repre-
sented. If every single connection would have to be displayed
in the graphical representation, the screen could become very
crowded and one would lose a certain amount of surveyability.
Imagine, for example, the display of ten connections between
a pair of systems.

8.5 Consequences of Manipulations on the Physical Topology 123

� Information about the connections contained in a �composite�
connection can be easily accessed with the modelling tool.

� �Single� connections show the user-deÞned directionality of
the connection graphically and composite connections do not
(and can not). The directionality of the connections of a com-
posite connection can be easily accessed with the modelling
tool. Remember, however, that the origin and target of a con-
nection only deÞne a reference co-ordinate system for the ac-
tual ßow (of extensive quantities). The actual direction of the
ßow depends on a difference in potential between the systems.

� All deÞned systems are subsystems of the tree root and con-
sequently there are no external systems and no external con-
nections.

¤

8.5 Consequences of Manipulations on the Physical
Topology

Manipulation of the physical topology can give rise to two kind of problems
with the already deÞned connections. The Þrst arises when one wishes to
reÞne an elementary system which is connected to other systems. The second
problem occurs when one deletes, copies or saves a (composite or elementary)
system which has one or more external connections. Both of these actions
will cause the involved connection to be, at least temporary, not properly
deÞned or �undeÞned�. The two problems give rise to two different kinds of
�undeÞned� connections, namely �loose connections� and �open connections�.
The following will discuss how these two types are handled in the modelling
tool.

8.5.1 Loose Connections

Loose connections show up when one wants to reÞne an elementary system
that has connections. This means that one zooms in on an elementary system,
which is already connected to other systems, in order to add subsystems to
this system and thus change it into a composite system. As soon as one or
more subsystems are inserted to an elementary system with connections, all
these connections will loose their meaning/relevance because they are now no
longer deÞned between two elementary systems.

A solution to this problem is to introduce (temporary) loose connections.
A loose connection is deÞned as a connection of which one or two ends are

124 Construction of the Physical Topology

connected to a composite system. A loose connection thus has no physical
meaning, it is just a temporary state of a connection to help the model designer
in fast and easy modelling. The �loose ends� of a loose connection have to
be reconnected to a subsystem of the system the connection was originally
connected to, in order to form a properly deÞned connection again.

Example 8.3: Loose Connections

Figure 8.13: Appearance of loose connections, when zooming in on a connected
elementary system.

Consider a system (system 1 in Þgure 8.13) which is connected to
two other systems (systems 1.2.1.1 and 1.2.2). If we now zoom in
on system 1.1 (as shown in Þgure 8.13), the connections that are
connected to the system 1.1.are shown as loose connections, but
they are, in fact, still correctly deÞned connections, because system
1.1 is still an elementary system. If we would add a new system to
system 1.1, the connections would loose their meaning, because sys-
tem 1.1 would then turn into a composite system and connections
must always be deÞned between two elementary systems.

The �1.1� in the temporary endpoints of the loose connections de-
note that the loose connections have to be reconnected to a subsys-
tem of system 1.1. The reconnection of the loose connections (if
necessary) can be done at any point during the model deÞnition.

¤

8.5 Consequences of Manipulations on the Physical Topology 125

8.5.2 Open Connections

An open connection is deÞned as a connection that is only connected to one
system. The other system of the connection (either the target or the origin)
is not yet deÞned. Connections that are not connected to any system are no
connections and therefor do not exist. So, if the result of a manipulation on
the physical topology is an open connection with no connected systems, then
this connection is deleted.

Just like a loose connection, an open connection has no physical meaning
and is just a temporary state to help the model designer. Open connections
can appear by one of the following actions:

� Deleting a system that is connected to systems that are not deleted.

� Copying or exporting a set of systems that are connected to systems
that are not being copied or exported. The copied systems will contain
connections that are open because these connections are only connected
at one side.

� Deliberately making a new connection that is only connected to one
system (either the origin or the target of the connection). This can be
of help, for example, in the construction of not Þnished, but reusable
model parts, such as heat exchangers. In the overall model, a shell and
tube heat exchanger must be connected to a source and sink for both
the contents of the shell and tube. The heat exchanger as a stand alone
model is not (yet) connected. If a model designer imports the model of
the heat exchanger into another model, he will not forget to properly
connect the heat exchanger to the existing model, because the open
connections of the heat exchanger have to be reconnected.

Open connections may be reconnected at any time to any elementary sys-
tem of the physical topology. They can, of course, also be deleted.

A special feature ofModeller that only applies to open connections is that
they can be hidden in order to increase the surveyability when the model
designer is not focussing on the open connections.

126 Construction of the Physical Topology

Example 8.4: Open Connections

Figure 8.14 shows that by deleting system 1.1 three open connec-
tions will form. Standard, only those open connections are shown
for which the connected endpoint is visible on the screen. In this
example this means that only connections 2 and 3 are visible and
connection 1 is hidden, because system 1.1.1.1 is not visible on the
screen. It is possible, though, to show all the open connections on
the screen.

Figure 8.14: Appearence of open connections, when deleting a connected ele-
mentary system.

In contrast to loose connections, the temporary endpoints of the
open connections do not contain a number. This means that an
open connection can be reconnected to any elementary system of
the physical topology.

¤

8.5.3 Possible States of Connections

As mentioned, connections can have different (temporary) states to help the
model designer with the construction of process models. The Þnal model
can, of course, not contain any �undeÞned� connections, so these have to be
dealt with before the model designer generates the end result. Figure 8.15

8.6 Repetitive Structures 127

summarises the possible temporary states of connections, during the model
construction phase:

Figure 8.15: Possible states of connections.

Remarks:

� The loose end of connection C2 (i.e. system 2) can only be reconnected
to (elementary) subsystems of this composite end (i.e. system 2.1 or
2.2). The same accounts for the loose ends of connections C3 and C5

� The open ends of connections C4 and C5 can be reconnected to any ele-
mentary system (except the (elementary) system it is already connected
to (system 2.2 in case of reconnecting connection C4)).

8.6 Repetitive Structures

An additional advantage of the temporary states of the connections is that
these can be used for the deÞnition of so-called repetitive structures. These
repetitive structures can be used to approximate the behaviour of distributed
systems or to build large, interconnected physical topologies in a very quick
manner. The implementation of repetitive structures inModeller is limited (for
now) to one-dimensional repetitions. Expansion to two and three-dimensional
repetitions should, in principle, be trivial.

The following example illustrates the implementation of repetitive struc-
tures. In principle, the repeated structure can be a tree of any size and depth
with any kind of interconnection, but to keep things simple we use a �ßat
topology� as repetitive structure.

128 Construction of the Physical Topology

Example 8.5: Repetitive Structures

Figure 8.16: Repeating a repetitive structure. a-b) repetitive structure. c-d)
repeated repetitive stucture.

Consider the physical topology shown in Þgures 8.16a and 8.16b.
The physical topology consists of 6 systems (1, 2.1, 2.2, 2.3, 3 and
4), 4 mass connections, 2 heat connections and 1 work connection.
The system 2 is the one that is to be �repeated� (three times, in this
example). In this example, the heat connections are used for the
interconnection of the repeated structures. The �repetitive system�
of heat connection 1 is system 2.1, which means that the connec-
tion will be connected to the system 2.1 of the next copy when the
structure is repeated. The repetitive system of heat connection 2
is system 2.3. The (encircled) work connection is set to be �con-
nected to all repeated structures�. Mass connections 2 and 3 are

8.6 Repetitive Structures 129

internal to the structure and will be copied and be internal to each
copy of the repeated structure. Mass connection 1 has its target
in the repeated structure and will only be connected to the Þrst of
the repeated structures. Mass connection 2 has its origin in the
structure that is to be repeated and will only be connected to the
last copy, when the structure is repeated.

Figure 8.16c shows the result when system 2 is repeated three times.
Figure 8.16d shows the result of the repetition when the composite
systems (2, 5, 6 and 7) shown in Þgure 8.16c are degrouped.

¤

The repetive structure building function can seriously speed up the con-
struction of larger models, because, when the repetitive stucture is properly
initialised, the resulting structure will also be properly initialised.

130 Construction of the Physical Topology

Chapter 9

Construction of the Species
Topology

The deÞnition of the species topology of a process is initialised by assigning
sets of species (and/or reactions) to some systems. Species, as well as reac-
tions should be selected from corresponding databases. So, before the species
topology can be deÞned, a species and a compatible reactions database must
be deÞned. Such a database contains a list of species and a list of possible
reactions between those species. A species and reactions database should, of
course, be editable by the user in order to satisfy the speciÞc needs of the user.

In the following, the complete process the model designer wishes to develop
is referred to as the plant.

9.1 DeÞning Plant Species and Reactions

Processing plants involve different types of processes, such as mineral, petro-
chemical, pharmaceutical, polymeric, or biological with various species and
reactions. The deÞnition of the species in various parts of a processing plant
requires data about these species. This data can be found in species and reac-
tions databases. In general, a processing plant does not involve all the species
and reactions that are listed in a database. Therefore, a model designer has to
select a subset from this list, which comprises all the species and reactions that
appear in the (model of the) plant and which thus serves as the �database�
for that particular plant. This plant database is then a collection of all species
and reactions that may exist in the plant. The selected subset of species will
be called the plant species. The selected reactions will be called the plant
reactions. These subsets have to be formed to improve the surveyability and
to prevent unnecessary computations involving species and reactions that are
not present in the plant.

131

132 Construction of the Species Topology

For the construction of the species topology, the species name, its formula
or more speciÞcally its index in a database is sufficient, but the database
can and must, of course, contain other information, such as speciÞc physical
properties. Similarly for reactions, only information about which reactants and
which products are involved in a reaction, is sufficient for the construction of
the species topology. However, stoichiometric coefficients and other reaction
data are most likely to be connected with the database.

With Modeller, species and reactions can be selected from one or more
user speciÞed databases to form the plant species and reaction sets. To aid a
model designer in deÞning a plant species and reaction set for his process, the
following actions can be performed:

� Adding species to the plant species set. The user speciÞed species will
be copied from the database and added to the plant species set.

� Adding reactions to the plant reaction set. Whenever a new reaction is
added to the plant reactions set, the plant species set will automatically
be extended with all involved species(i.e. the reactants and products of
the reaction),which were not yet listed in this set.

� Removing reactions from the plant reaction set. The user speciÞed re-
actions will be removed from the plant reaction set and will consequently
also be removed from all the systems in which they were injected.

� Removing species form the plant species set. Whenever a species is
removed from the plant species set, all reactions of the plant reactions
set, which contain this species (either as a reactant or a product), will be
removed from the plant reactions. The species and reactions that were
removed from the plant sets will, of course, also be removed from all the
systems they were used in.

9.2 Injecting Species and Reactions

The deÞnition of the species topology is initialised by �injecting� species
and/or reactions into elementary systems. This means that the model designer
has to assign a set of species and/or reactions to some elementary systems.
These species can only be selected form the deÞned plant species and reac-
tions, since these sets represent all species and reactions that may exist within
the plant.

After the assignment of the injected species and injected reactions to a
speciÞc system, the modelling tool will (re)calculate (parts of) the species
distribution. This means that the species will propagate into other systems

9.2 Injecting Species and Reactions 133

through mass connections. Within the systems, the species may undergo re-
actions and generate �new� species, which in turn may propagate further and
initiate further reactions. This eventually results in a speciÞc species distribu-
tion over the elementary systems, which is referred to as the species topology
of the processing plant. The distribution process will be clariÞed in section
9.4.

The foregoing made clear that the species that are actually associated with
a system can have either one of the following sources:

� Initialised species: injected to a system by a model designer

� Transferred species: arrived through one of the mass connections

� Product species: result of a reaction.

The reactions that are associated with a system can only be the result of
a manual injection by a model designer.

Figure 9.1: Injecting of species and/or reactions at composite systems.

Species and reactions may also be injected at composite systems. The
injected species and/or reactions will then actually be injected in all the el-
ementary systems that are subsystems of the composite system (see Þgure
9.1). The same accounts for the removal of injected species or reactions: If a
species or reaction is to be removed from a composite system, then this species
or reaction will actually be removed from the injected species or injected reac-
tions sets (only if the speciÞc species or reaction is listed, of course) of all the
elementary systems that are subsystems of the composite system (see Þgure
9.2).

134 Construction of the Species Topology

Figure 9.2: Removing of injected species and/or reactions from a composite
system.

The injection of a reaction into an elementary system does not automati-
cally imply that this reaction can �happen� in this system and thus that the
products of this reaction can be formed. If not all reactants of a reaction are
available in a system, then this reaction cannot take place in this system. In
such a case, the system will have an injected reaction but this reaction will
not be active (it is disactivated). So, the reaction will not take place in the
system in this case. When the species distribution is changed and the reaction
can take place again, it will automatically be �re-activated�.

It should be noted that the presence of an �activated� reaction in a system
does not imply that this reaction has to happen in this system. It implies that
this reaction may happen in this system.

9.3 Permeability and Uni-Directionality of Mass Con-
nections

In the physical topology of a plant, mass connections establish the communi-
cation paths between pairs of systems, without specifying which species may
or may not be transferred. As mentioned, permeability and uni-directionality
are introduced as properties of mass connections. They constrain the mass ex-
change between systems by making the species transfer respectively selective
or uni-directional.

The permeability of a mass connection can be deÞned in two complemen-
tary forms:

� Permeable Species Set: This set includes all species that may pass
through the mass connection. All other species of the plant species set
can not be transferred via this mass connection.

9.4 Propagation of Species 135

� Non-Permeable Species Set: This set is formed by selecting all
species that are not be transferable through the mass connection.

Both complementary approaches are enabled with the modelling tool since
not having one or the other approach may force a model designer to (repeti-
tively) deÞne large sets of species.

Often, most connections in a model of a process represent convective ßows,
which by deÞnition communicate all species. Therefore, the default permeabil-
ity of a mass connection is deÞned by an empty non-permeable species set and
thus as permeable for all species.

Which species are actually transferred through a connection depends on
the species sets of the two connected systems. In reality, it also depends on
the actual transfer direction, which depends on the states of the two connected
systems. Since the latter information is not available during the construction
of the physical and species topology, mass connections are assumed to transfer
potentially in both directions (by default). Species may therefore exist on both
sides of a connections, that is, if a species appears on one side of a connection
and it is not inhibited by a deÞned permeability, it may also appear on the
other side. This policy is very suitable for safety and hazard studies, as the
resulting species topology is a maximum solution, showing where the different
species may occur (and showing which reactions are potentially possible) in
different parts of the process� model. This approach, though, will generate
more equations than necessary for the description of common processes. That
is why the concept of uni-directional mass transfer is introduced. This can
reduce the number of equations, because species are only allowed to propagate
in one direction when the species distribution is (re)calculated and this can
reduce the number of species in an involved system. The resulting species
topology, based on this policy, could reßect more closely the actual situation
in the process.

9.4 Propagation of Species

Whenever an operation is executed which modiÞes the current species distribu-
tion, a mechanism has to be activated which updates the species distribution
over all elementary systems of the affected mass domains. To facilitate in the
deÞnition of such a mechanism, every elementary system contains:

� a list of injected species (here called: Injected-Species).
� a list of �actual� species (Species-List).
� a list of injected reactions (Injected-Reactions).

136 Construction of the Species Topology

� a list of �actual�or �active� reactions (Reaction-List).

The update mechanism employed in theModeller makes use of the follow-
ing algorithm:

PROCEDURE UpdateSpeciesTopology (Mass-Domain)

FOR ALL elementary systems OF Mass-Domain DO

CLEAR Species-List

CLEAR Reaction-List

END

FOR ALL elementary systems OF Mass-Domain DO

FOR ALL injected-species OF system DO

IF injected-species IS NOT IN Species-List OF system THEN

PropagateSpecies (injected-species, system)

END

END

END

END UpdateSpeciesTopology;

This procedure Þrst clears all the information about the current species
distribution of the affected mass domain (Mass-Domain), by removing all
species and reactions from the actual species and reaction lists of all involved
elementary systems. Then the procedure injects all the species which are
listed in the lists of injected species of the primitive systems. Remember that
all injected species of a speciÞc system were assigned manually by a model
designer and stored in the injected species list of the corresponding system.

The injection of the species is done by making use of the procedure Prop-
agateSpecies. This procedure takes care of the propagation of species and
the initiation of set reactions. The procedure has a speciÞc system and a spe-
ciÞc species as argument. The algorithm for this procedure can be described
as follows:

9.4 Propagation of Species 137

PROCEDURE PropagateSpecies (Species, System)

ADD Species TO Species-List OF System

FOR ALL injected-reactions OF System DO

IF reaction NOT IN Reaction-List OF System THEN

IF ReactionIsPossible(reaction, System) THEN

ADD reaction TO Reaction-List OF System

FOR ALL products OF reaction NOT YET IN Species-List OF System DO

PropagateSpecies(not-listed-product, System)

END

END

END

END

FOR ALL connected-mass-connection OF System DO

IF SpeciesMayPassThrough(connection, Species, System) THEN

IF Species NOT YET IN Species-List OF other-connected-system THEN

PropagateSpecies(Species, other-connected-system)

END

END

END

END PropagateSpecies

The PropagateSpecies procedure is a more complicated procedure then
the UpdateSpeciesTopology procedure. This is partly due to the fact that
the procedure is a recursive procedure (the procedure calls itself). The proce-
dure has the argument �(Species, System)�. This means that this procedure
uses the species and system given in the argument for some speciÞc operations,
which have to be performed with this species and system.

The procedure starts with adding the species �Species� to the species list
(Species-List) of the elementary system �System�. After that, the procedure
checks for every injected reaction of the system �System� wether it is al-
ready listed in the reaction list (Reaction-List) of the system. Whenever an
injected reaction (reaction) is not yet listed in Reaction-List, the procedure
ReactionIsPossible checks if the system System contains all the reactants
of that not yet activated reaction. If all reactants of the reaction are available
in the system, then this means that this reaction may happen in the system
and the reaction will be �re-activated� by adding it to the Reaction-List of
the system. As the reaction is possible now, it may produce species that are
not yet listed in the Species-List of the system. Any species that is not yet
listed in the list, will be added to the system System by calling the procedure

138 Construction of the Species Topology

PropagateSpecies. This means that the procedure will call itself, but with
different arguments. The �Þrst� PropagateSpecies will continue after the
�second� has Þnished. Within the �second�, of course, a �third�, �fourth�,
etc. can be called.

When all injected reactions of the system �System� have been checked, the
procedure continues with checking all mass connections of the system. The
procedure SpeciesMayPassThrough examines wether the species Species
may pass through the current mass connection. The species can be prohibited
to pass through the connection in two ways: it can be inhibited by a deÞned
permeability or the connection in uni-directional and the ßow of species is
in the other direction. If the mass connection permits the species Species to
pass through to the system that is connected to the system System via this
connection, the procedure will check if this species is already listed in the
species list of the other system of the connection. When this is not the case,
PropagateSpecies will be invoked with the species and this other system as
argument. In this way the species �Species� will propagate to all the connected
systems and will be properly distributed.

The following example will illustrate the working of the update procedure.

Example 9.1: Automatic Species Distribution

Figure 9.3: a). Flat topology of the process, b). Distribution of species P
from its injection point to other connected systems.

Figure 9.3a shows the ßat topology of a process. The plant species
set of this process model consists of the species P , Q and R, and
the list of possible reactions contains only the reaction: P +Q →
R. Between the systems (ΣA through ΣH) some mass connections

9.4 Propagation of Species 139

(�1� through �8�) are deÞned, some of which are uni-directional or
impermeable for some species: Connection �3� is uni-directional,
connection �6� is impermeable for species P and R, and connection
�8� for species P .

The species P is injected in system A. When the species topology
is updated, the update procedure executes the following major steps:

1. All species and reaction lists of all elementary systems are
cleared.

2. System ΣA is the only system of the mass domain with an
injected species, namely the species P . This species is added to
the species list of system ΣA by calling the procedure Propa-
gateSpecies(P , ΣA).

3. There are no injected reactions deÞned yet, so all operations
involving reactions are skipped.

4. The procedure checks all mass connections of ΣA, which are
permeable for species P . Connection �1� is permeable for P
and has system ΣB as other connected system. System ΣB
does not yet have species P in its species list, so Propagate-
Species(P , ΣB) will be invoked.

5. The procedure PropagateSpecies(P , ΣB) checks all mass
connections of ΣB. The Þrst one is connection �1�, which has
ΣA as other connected system. ΣA already has species P in
its species list, so nothing happens.

6. The next connection of system ΣB is checked. Connection �2�
has system ΣC as other connected system, so Propagate-
Species(P , ΣC) is called.

7. This procedure will again check all the connections of the spec-
iÞed system, here ΣC. ΣC only contains one connection. This
connection is connected to the system ΣB, which already has
the species P listed in its species list. This means that the
procedure PropagateSpecies(P , ΣC) ends and the proce-
dure PropagateSpecies(P , ΣB) will continue.

8. The procedure continues by checking the next connection, con-
nection �3� and thus by invoking PropagateSpecies(P , ΣD).

Etc. The update mechanism will continue in this way, until the
complete species topology is updated. The resulting species
distribution is represented in Þgure 9.3b.

140 Construction of the Species Topology

Then species Q is injected in system ΣD. If the update mechanism
is activated again, then the updating procedure starts again with
system ΣA, were it Þnds the injected species P . This means that
the species P will distribute itself again as described above. Af-
ter the distribution of species P , the UpdateSpeciesTopology
procedure will check for other injected species in system ΣA and
check for injected species in other systems. When the procedure
gets to system ΣD it will Þnd species Q as injected species. This
means that the procedure PropagateSpecies(Q, ΣD) will be in-
voked, and that the species Q will distribute itself in the same way
as species P . The resulting species topology is represented in Þgure
9.4a.

Figure 9.4: a. Distribution of species P and Q, Distribution of species P , Q
and R.

As one can see in this representation, there are three systems, ΣD,
ΣE and ΣF , which contain both species P and Q. In those systems
the reaction P + Q → R could be set active. If the reaction is
injected in system ΣE, then the update procedure will be invoked.
The procedure starts with clearing all the species and reaction lists.
Then the procedure continues with the distribution of species P
from system ΣA. When the update mechanism gets to system ΣE,
it will check if the reaction of this system is possible. The reaction
is not possible yet, because only species P is listed in the species list
of ΣE at this time, which means that not yet all reactants are avail-
able. As a consequence the reaction will remain disactivated (i.e.
not added to the reaction list) and the propagation of P continues.

9.5 Consequences of Manipulations 141

After P is distributed, Q will be distributed again from system ΣD.
When the update mechanism gets to system ΣE again, it will check
if the reaction is possible. Both reactants are available in the sys-
tem, which means that the reaction will be activated (i.e. added to
the reaction list) and that the procedure PropagateSpecies(R,
ΣE) will be invoked. Consequently the species R will be distributed
before the distribution of species Q continues. (The resulting species
topology is displayed in Þgure 9.4b).

When the update mechanism gets to system ΣE again, it skips the
reaction, because it is already activated. In this way no unneces-
sary computations are made. When one would remove the injected
species P from system ΣA or remove one of the connections �1�,
�3� or �4�, the species P would be removed from the species list of
system ΣE. This would mean that the reaction P +Q→ R cannot
take place anymore in system ΣE because not all the reactants are
available. As a consequence the reaction would be disactivated and
species R would not be generated and thus not be distributed. This
means that the species R would vanish from the species topology.
Re-introducing the species P to the system ΣE would reactivate the
reaction, and species R would again be generated and distributed.

¤

9.5 Consequences of Manipulations

The application of some modiÞcation to the physical structure of a model,
such as deletion of a system or the removal of a (mass) connection, will in-
validate (parts of) the constructed species topology. The species distributions
of all affected mass domains and the mass domains themselves are therefore
reconstructed by the modelling tool after any signiÞcant change of the physical
topology.

Also, modiÞcations to the species topology itself will inßuence the species
distribution. For example, the removal of an injected species, the �removing�
of a reaction or the changing of the permeability of a connection will have an
effect on (parts of) the species topology. Every action that affects the species
distribution of a particular mass domain will invoke an update mechanism
which will recalculate the species distribution of that domain.

142 Construction of the Species Topology

Chapter 10

Construction of the Equation
Topology

The equation topology forms a very important part of the modelling process,
for with the information of this topology the complete model of the process
is generated. The objective of the equation topology is the generation of a
mathematically consistent representation of the process under the view of the
model designer (who mainly judges the relative dynamics of the various parts,
thus Þxes intrinsically the dynamic window to which the model applies). In
order to efficiently produce dynamic process models, the Modeller must, of
course, appropriately deal with variables and equations.

This chapter deals with the implementation of the variables and equations
that arise in the modelling of physical, chemical and/or biological processes
when the structured modelling methodology, which was covered in part I of
this thesis, is used. The chapter will not cover all implementation details of
the equation topology. Only the most relevant topics (with respect to the
modelling methodolgy) will be dealt with.

10.1 Balance Equations

In section 5.3 it was shown that the balance equations can be automatically
generated when the Þrst two steps of the modelling approach, namely the
construction of the physical and species topology, have been completed. The
matrix notation of the balance equations makes use of the so-called stream or
interconnection matrices and stoichiometric matrices. Since we have deÞned
three basic connections to describe the ßow of the extensive quantities, three
stream matrices can be derived from the physical topology: A mass stream
matrix, a heat stream matrix and a work stream matrix. Only the extensive
quantities of lumped systems (distributed systems are not considered) are bal-

143

144 Construction of the Equation Topology

anced, since for source, sink and steady state systems they are not deÞned.
For steady state systems the balance equations are also required, but the accu-
mulation terms are set to zero (see section 6.4), so only for lumped and steady
state systems the stream matrices are needed. For the ease of representation
and, consequently, the manipulations, all (elementary) systems are therefore
sorted (i.e. numbered) in a list, in which Þrst all lumped systems are listed.
Consecutively the steady state, source and sink systems are listed. The list
of all elementary systems of the process represents the complete process. The
deÞnition of composite sytems serves the ease of organising the process model
and therefore composite systems are not listed.

Next, all correctly deÞned mass, heat and work connections are listed suc-
cessively, excluding the open and loose connections as they are considered as
non-existent. Each connection contains a �direction� vector, which denotes to
which two systems the connection is connected. With this ordered informa-
tion, the stream matrices (A) of each type of connection can now easily be
computed. For each type of connection the following function is called:

FUNCTION [A] = StreamMatrix (numLump, numStSt, connections)

numCon = LENGTH(connections)

IF numCon > 0 THEN

A = EmptySparseMatrix(numLump + numStSt, numCon)

FOR i = 1 TO numCon DO

FOR j = 1 TO 2 DO (* 1 = origin, 2 = target *)

IF connections(i, j) <= numLump + numStSt THEN

A(connections(i, j), i) = (-1)j

END

END

END

ELSE

A = 0

END

END StreamMatrix

The function StreamMatrix has the number of lumped systems (num-
Lump), the number of steady state systems (numStSt) and the connections
themselves (connections) as an input. The output of the function consists of
the streammatrix (A). The term connections is deÞned as a (number of connections×
2) matrix. The Þrst column of this matrix respresents the (numbers of the)
origin systems of each connection. The second column refers to all the target
systems.

10.1 Balance Equations 145

Example 10.1: Construction of the Stream Matrix

Figure 10.1 shows the ßat topology of a process in which three lumps
(systems 1, 2 and 3), two steady state systems (4, 5), a source (6)
and a sink (7) are deÞned. The systems are already sorted in the
above-described manner.

Figure 10.1: Flat topology of a process with lumps (1,2,3), steady state systems
(4,5), a source (6) and a sink (7).

It can be easily derived from this Þgure that the matrix connections
will be deÞned as follows:

connections =

6 1
1 2
4 1
3 7
3 5
2 4
4 5

(10.1)

and that numLump = 3,numStSt = 2 and numCon = 7.

The StreamMatirx procedure starts by allocating a sparse empty
matrix of dimension (5×7). Next it runs through all the connec-
tions: The number of the origin of the Þrst connection (i = 1) is
6 (connections(1,1) = 6) and this is larger than numLump +num-
StSt, so nothing happens. The target (j = 2) of this connection
has number 1 (connections(1,2) = 1), which is smaller than num-
Lump + numStSt. Therefore, the entry of the stream matrix of the
lumped systems at (1,1) will be adapted: A(1,1) = (-1)2 = 1. For
connection 3 (i = 3) the origin has number 4 (connections(3,1) =
4), which is smaller than numLump + numStSt, so A(4,3) =(-1)1

=-1.

Following this procedure for all the connections will result in the

146 Construction of the Equation Topology

following two stream matrix:

A =

1 −1 1
. 1 . . . −1 .
. . . −1 −1 . .
. . −1 . . 1 −1
. . . . 1 . 1

 (10.2)

¤

Section 5.3.1 showed that the mass stream matrix is not used directly
in the component mass balances, but that some additional operations have
to be performed, since the component mass ßows consist, in general, of a
vector of components. First, the stream matrix is Kronecker multiplied with a
unity matrix, which has the same dimension as the number of species that are
present within the considered mass domain. The resulting matrix is pre and
post multiplied with the sytem and connection selection matrix respectively.
These operations, as well as the formation of the stoichiometric matrix for all
systems, are straightforward and need no further explanation. In Chapter 11
examples illustrate all details of the derivations.

10.2 Equation ClassiÞcation

The algebraic equations, that are needed to complete the model deÞnition,
where devided into three main groups in section 5.4. Modeller contains a
database in which a set of possible algebraic equations is listed. In this
database, which can, of course, be further expanded by a model designer, the
main groups are further subdivided. Carefull consideration should be given,
though, were new algebraic equations are placed. An algebraic equation can
be placed in one of the following groups (the groups that actually contain the
equations are bold faced):

* System equations

- Connection equations

� Mass connections

- Bi-directional

* Unmodelled ⇒ Assumptions

* Rate

- Uni-directional

* Unmodelled ⇒ Assumptions

10.2 Equation ClassiÞcation 147

* Rate

� Heat connections

* Unmodelled ⇒ Assumptions

∗ Rate
� Work connections

∗ Unmodelled ⇒ Assumptions

∗ Rate

- Reaction equations

* Unmodelled ⇒ Assumptions

* Rate

* Species equations

* Control equations

Two �new� groups were added to the main groups, namely species and
control equations. These new groups are there for convenience only, because
normally they can be placed within the other groups.

The species equations are equations that represent physical properties of
species (or groups of species). Most of the time, these equations would be
assigned to the group of systems equations, but because these equations often
hold independent of the system and can be easily coupled to a species database,
a separate group is deÞned.

Control action usually affects some connection characteristics (such as the
position of a valve), but sometimes, for convenience or as a simpliÞcation,
a controller directly affects the secondary state variables of a source or sink
system (for example, when a controller directly controls the temperature of a
stream, which is, of course, physically impossible, but often seen in modelling).
Also, the control equations are usually very different from the other algebraic
equations, since they can also hold differential and integral terms. For these
reasons the control systems and connections where deÞned in section 5.7 and
their equations are placed in a separate group.

When a model designer is constructing a process model, this equation
classiÞcation comes in handy, because for each modelling object only a limited
range of equations can be choosen and this reduces the chances of making
silly mistakes. When, for example, a mass connection is deÞned as being bi-
directional, the model designer must choose if he wants to deÞne the ßow rate
through the connection or if he wishes to leave this ßow unmodelled. Either

148 Construction of the Equation Topology

way, he is directed to a set of possibilities: a set of possible rate equations or a
set of possible contraints. This way the modeller becomes more aware of what
assumptions he makes. Also, the assumptions are automatically documented
and very easily traced and thus very easily changed.

10.3 Computational Order

In the fourth and Þfth steps of our modelling approach the algebraic equations
are added to the model deÞnition. For each modelling object (i.e. system,
connection or reaction) these algebraic equations can, in principle, be choosen
randomly from the database. In doing so,the problem arises that not every
numerical equation solver will be able to solve the equations since the equa-
tions are not in the so-called correct computational order and are not always
in (correct) explicit form. There are solvers, such as DAE-1 solvers, that can
handle implicit algebraic equations, but when the equations are simpliÞed by
performing preliminary symbolic manipulations, a much more efficient com-
putational code can be obtained. A very important step to achieve an efficient
computational code for DAEs, is to solve the equations for as many algebraic
variables as possible, so that it is not necessary to introduce these variables as
unknowns in the numerical DAE-solver, since they can be calculated at any
call of the residual routine from the information available (Carpanzano 1996).
Consider the simple pair of equations:

x2 − 2x1 = 4 (10.3)

x1 − 7 = 0 (10.4)

In order to solve these equations directly, they must be rearranged into the
form:

x1 = 7 (10.5)

x2 = 2x1 + 4 (10.6)

The implicit equation 10.4 cannot readily be solved for x1 by a numerical
program, whilst the explicit form, namely 10.5, is easily solved for x1 and only
requires the evaluation of the right-hand-side expression. Equation 10.3 is
rearranged to give 10.6 for x2, so that when x1 is known, x2 can be calculated.

The rearranged form of the set of equations can be solved directly because it
has the correct computational causality. This computational causility is, quite
obviously, not a physical phenomenon, but a numerical artifact (Elmqvist and
Otter 1993)(Thevenon and Flaus 2000)(Cellier and Elmqvist 1993). Take, for
example, the ideal gas law:

pV = nRT (10.7)

10.3 Computational Order 149

This is a static relation, which holds for any ideal gas. This equation does
not describe a cause-and-effect relation. The law is completely impartial with
respect to the question wether at constant temperature and constant molar
mass a rise in pressure causes the volume of the gas to decrease or wether
a decrease in volume causes the pressure to rise. For a solving program,
however, it does matter wether the volume or the pressure is calculated from
this equation.

It is rather inconvienient that a model designer must determine the cor-
rect computational causality of all the algebraic equations that belong to each
modelling object, given a particular use of the model (simulation, design, etc.).
It would be much easier if the equations could just be described in terms of
their physical relevance and that a computer program automatically deter-
mines the desired causality of each equation and solves each of the equations
for the desired variable by means of symbolic manipulation.

There exist computer programs that allow for model descriptions that
are not (yet) in the correct causal form, because they are built on so-called
non-causal languages. Within the last two decades a variety of these object-
oriented, non-causal languages for physical systems modelling have been de-
velloped. Examples of these languages and/or their implementations in com-
puter programs are ASCEND (Piela and Westerberg 1991), Dymola (Elmqvist
1978), Omola (Mattsson and Andersson 1992), Modelica (Mod 2000), gProms
(Barton 1992) (Barton and Pantelides 1993), YAHMST (Thevenon and Flaus
2000), ABACUSS (Freehery and Barton 1996), χ (Fábián 1999), SimGen
(Dormoy and Furic 2000). All these programs manipulate and reorder the
entered equations in such a way that a solution can be found for a speciÞc
problem.

The entered equations still have to adhere to some conditions:

� For any set to be solvable, there must be exactly as many
unknowns as equations

� It must be possible to rearrange the equations such that the
system of equations can be solved for all unknowns.

The Þrst condition, called the Regularity Assumption in (Weiss 2000),
is obviously a necessary condition. It can be checked immediately and all
numerical DAE solvers take this preliminary check.

In order to solve a set of equations efficiently, the equations must be rear-
ranged in Block Lower Triangular (BLT) form with minimal blocks, that can
be solved in a nearly explicit forward sequence (Abbott 1996), (Barton 1995),
(Barton 2000), (Elmqvist and Cellier 1995), (Egelhoff et al. 1998), (Cellier and
Elmqvist 1993), (Thevenon and Flaus 2000), (Dormoy and Furic 2000).

150 Construction of the Equation Topology

Example 10.2: Block Lower Triangular Form of Algebraic Equa-
tions

Consider the following simple example, consisting of four nonlinear
equations and four unknown variables:

f1(x1, x3,x4)
f2(x1, x2)
f3(x4)
f4(x2, x4)

M =

x1 x2 x3 x4
1 0 1 1
1 1 0 0
0 0 0 1
0 1 0 1

 (10.8)

The matrix M represents the incidence matrix and is a compact
representation of the structure of the set of equations. This matrix
signals wether a variable occurs in an equation, or not. By permut-
ing variables and equations, this set of equations can be brought to
BLT-form:

f3(x4)
f4(x2, x4)
f2(x1, x2)
f1(x1, x3,x4)

M0 =

x4 x2 x1 x3
1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1

 (10.9)

This process is called the partitioning of the set of equations. The
strictly lower triangular form of the permuted incidence matrix
characterises the fact that the nonlinear equations can be solved
one at a time in a given sequence. First, x4 can be calculated from
function f3 and then, succesively, x2 form f4, x1 from f2 and x3
form f1. In the case where an equation or a block of equations can-
not be solved symbolically for the required variables, either because
it is not possible or it is too cumbersome, a numerical root solver
may be employed for solving this task.

¤

There exist efficient algorithms to transform to block lower triangular form,
e.g. (Tarjan 1972) and (Duff and Reid 1986). Many references state that it is,
in general, not possible to transform the incidence matrixM to a strictly lower
triangular form, but that there are most likely to be square blocks of dimension
> 1 on the diagonal of the incidence matrix. These blocks correspond to
equations that have to be solved simultaneously.

10.3 Computational Order 151

Figure 10.2: BLT form

In Þgure 10.2 (taken from (Thevenon and Flaus 2000)) the incidence matrix
of a set of equations, which are transformed to BLT form, is shown. White
areas indicate that the variables do not appear in the corresponding equation,
grey areas that they may or may not appear, and black areas represent the
variables still unknown in the block and which can be computed from the
corresponding equations. So, a block of this matrix indicates which set of
variables can be computed if the previous ones are known.

An observation I made during my research was that blocks are not very
likely to occur when no constraining assumptions have been made (i.e. when
all connections and reactions are deÞned via rate expressions) during the model
devellopment. The reason for this becomes apparent when viewing the infor-
mation ßow as it is shown in Þgure10.3:

Figure 10.3: Information ßow for a simulation.

When a DAE-1 model is formulated and proper initial conditions have been
deÞned, then the information ßow of a simulation can be depicted as in Þgure

152 Construction of the Equation Topology

10.3. Starting from the initial conditions x0, the secondary state variables y
of all the systems can be calculated. Subsequently, the ßow rates z of all the
deÞned connections and the reaction rates r of all the deÞned reactions can
be calculated. These rates are the inputs of the balance equations, so now the
integrator can compute values for the primary state variables x on the next
time step. With these variables, the secondary state y can be calculated again
and the loop continues until the deÞned end time is reached.

For now, we are only concerned with the algebraic equations (the right
hand side of Þgure 10.3), which means that we can consider the primary state
variables x of each system as known. Systems are only interacting with each
other through connections and therefore the calculation of the secondary vari-
ables of each system can be done completely independent of other systems.
The system equations map the primary state into a secondary state for each
individual elementary system and each new equation has to deÞne a new (sec-
ondary) variable. In some cases two or more equations may introduce two
or more new variables, such that these equations have to be solved simulta-
neously in order to get a value for the variables. This does, however, not
occur very frequently. As a matter of fact, I only know of one case in which
this occurs, namely the introduction of temperature (I will elaborate on this
a bit further down). A conclusion that can be drawn from this, is that system
equations can, in many cases, be permuted in a strictly lower triangular form.
For connection and reaction equations a similar conclusion can be drawn. For
these equations the secondary variables of the systems (y) can be considered
as known (see Þgure 10.3).

Blocks with a dimension > 1 on the diagonal of the incidence matrix are,
in general, a result of making assumptions.

Example 10.3: Tank with Equilibrium Reaction

Consider a simple isotherm batch reactor in which a reaction AÀ
B takes place. The component mass balances are:

únA = −�ξ (10.10)

únB = �ξ (10.11)

We assume constant volume V (note: this is not a constraining
assumption, since the volume is, in this case, not related to the
primary state variables) and deÞne the concentration:

cA =
nA
V

(10.12)

cB =
nB
V

(10.13)

10.3 Computational Order 153

If the reaction rate �ξ is deÞned as a function of the concentrations,
there will be no problem in solving this model. When, however, a
steady-state assumption is made for the reaction1 (e.g. cA = kcB),
the index increases and, consequently, an index reduction has to be
performed:

ún∗ = únA + únB = 0 (10.14)

The algebraic relations and their incidence matrix for the reduced
problem are:

n∗ = nA + nB
cA =

nA
V

cB =
nB
V

cA = kcB

M =

nA nB cA cB
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 (10.15)

n∗ has become the new primary state variable, which can be com-
puted from the integration and is thus available for the computation
of the algebraic part of the model. The incidence matrix of the alge-
braic part cannot be permuted into a strictly lower triagonal form.
The minimal block size in the BLT form is four.

The only approach that leads to a strictly lower triangular form
is to perform symbolic substitutions, such that all the unknown
variables can be written as a function of n∗:

nA =
kn∗
k+1

nB =
n∗
k+1

cA =
kn∗

V (k+1)

cB =
n∗

V (k+1)

(10.16)

This solution is, however, only practical for small and/or linear
systems of equations. The complexity of symbolic solutions grows
rapidly with the number of equations (and consequently also vari-
ables). In the case of nonlinear relations, particularly when the
popular polynomial models are involved, multiple solution branches
(only one of which is correct) are obtained, which makes the task
for the numerical solver near impossible.

Another method that can be applied is called tearing and is a sim-
ple technique, introduced by (Kron 1962), to reduce large systems

1This is, of course, a rather silly assumption to make in this small model, since this
eliminates the dynamics from the model. The example is only used for demonstrating the
effects assumptions have on the algebraic equations.

154 Construction of the Equation Topology

of algebraic equations to smaller systems of equations. Tearing
means breaking algebraic loops in the dependency structure of equa-
tions and variables. A subset of the variables is chosen ase tearing
variables and a subset of the equations is chosen as residual equa-
tions. The choices are made in such a way that the remainder
of the variables can be calculated in sequence utilising the remain-
der equations, under the assumptions that the tearing variables are
known (Elmqvist and Cellier 1995).

Another possibility is to use a DAE-1 solver to solve the imposed
problem. In that case we do not introduce the new state variables
n∗, but let the solver deal with the algebraic constraint:

únA + únB = 0
0 = kcB − cA ⇔

µ
1 1
0 0

¶µ
únA
únB

¶
=

µ
0

kcB − cA

¶
(10.17)

Each time step values for nA and nB will result, which means that
the system equations do not have to be transformed and the sec-
ondary state variables (cA and cB in this case) can be easily cal-
culated. The algebraic constraint just �replaces� one of the dif-
ferential equations. The Modeller uses this solution whenever the
Simple Index Reduction method is applied. In many cases it may
be possible that a �faster� code can be generated, but it was not an
objective of this work to build the most efficient code possible. The
main goal is to be able to generate consistent process models, which
can (optionally) be postprocessed to obtain computational more ef-
Þcient code.

¤

There is one case in which the formation of blocks on the diagonal of the
incidence matrix seems unavoidable (even when no constraining assumptions
have been made), namely the introduction of temperature. The problems that
arise are due to the link between the energy balance and the component mass
balances (see equation 10.19). To keep things simple we will now consider the
enthalpy balance for one system with constant pressure and negligible mixing
enthalpies:

úH = A
m
�Hm +Aq�q+Ak �wk (10.18)

H = hTn (10.19)

h = h0 + cp(T − Tref) (10.20)

where

10.3 Computational Order 155

h :: Vector of partial molar enthalpies
h0 :: Vector of partial molar enthalpies at reference temperature
cp :: Vector of heat capacities

Tref :: Reference temperature
From equations 10.19 and 10.20 the variables h and T need to be solved

(all other variables are assumed to be known at this point).

M
1
=

h1 h2 h3 T
1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1

 M
2
=

h T·
1 0
1 1

¸

The incidence matrix M
1
shows the occurrence of h and T in the equations

10.19 and 10.20 when written out for three components. Clearly this block
cannot be decomposed into smaller blocks, so the equations will either have
to be solved simultaneously or have to be transformed by doing substitutions
and rearrangements.

Usually this problem is solved by substituting equation 10.20 in 10.19
(and thereby removing all partial molar enthalpies h) and then solving the
resulting equation for the temperature T . This solution can, however, get
very cumbersome. Especially when the heat capacities are also given as a
function of the temperature this can become far from trivial.

Incidence matrixM
2
shows the occurrence of the variables h and T in the

vector case. Although this incidence matrix is lower triangular, it does not
mean that the problem can be solved directly, because h is a vector and can,
of course, not be solved by the scalar equation 10.19. Similarly, the scalar T
can not be solved be the vector equation 10.20. A way to work around this
problem is to use the capabilities of the DAE-solver and solve equations 10.18
and 10.19 numerically for the enthalpy H and the temperature T respectively:µ

1 0
0 0

¶µ
úH
úT

¶
=

Ã
A
m
�Hm +Aq�q+Ak �wk
hTn−H

!
(10.21)

Subsequently, the remaining enthalpies h can easily be computed explicitly
from 10.20. An obvious advantage of this method is that no transformations
or substitutions have to be made.

The �problems� that arise by making assumptions locally, can be dealt
with locally. This is different from what is being done by current modelling
languages (such as Modelica, ABBACUS II, ASCEND): they all gather all
information from a modelling-session, then throw it all on one big stack and
then the symbolic analysis is done.

156 Construction of the Equation Topology

10.4 Output of Modeller

After completion of all the modelling steps, the Modeller is ready to gener-
ate consistent model equations. Since the output consists of mathematical
equations, an interface to any problem solving package could, in principle, be
written. Due to time limitations, though, I have limited the interfaced solv-
ing packages to one. I have choosen for a link to Matlab, since Matlab is a
widely used matrix oriented mathematical tool, in which a lot of the initial
calculations (such as null space and stream matrix calculations) can easily be
performed. The generated output (which, at the moment, is oriented on sim-
ulation) consists of 2 Þles: A documentation Þle and a code Þle, which can be
directly plugged into the problem solving package. An example of these two
Þles is listed in Appendix B.

10.4.1 Documentation File

The generated documentation Þle contains information on all assumptions
made by the model designer. It starts by listing the basic time-scale assump-
tions the model designer has made by giving the built tree structure and all the
(correctly) deÞned connections between the elementary systems of the physical
topology. Open and/or loose connections are not listed in the documentation
and are also not used in the code Þle, since these connections are not properly
deÞned. Next, all species and reactions that are used in the model (which
per deÞnition are subsets of the deÞned species and reactions) are listed and
all used equations and the variables used in these equations are given. The
number of different equations used in a model is very often not a function of
the complexity (i.e. the number of systems and connections) of the model,
but tends to stay rather low, indifferent of the size of the model.

After this general information on the model structure, more detailed infor-
mation is printed for each system, reaction, connection and species, such that
a person, who is interested in the model, can read which assumptions have
been made on the lowest level.

10.4.2 Code File

The generated code Þle is coded such that it can be directly plugged into the
problem solving package the model designer wants to use. For now, it is only
possible to generate a Matlab m-Þle, for use with the Matlab software. The
code Þle is written as a �self-executing�-Þle, which means that only the name
of the code Þle (standard saved as �modcode.m�) has to be entered in the
Matlab command window and the deÞned simulation problem will be solved.
The results of the simulation can be viewed by a specially designed output-
viewer, which is convieniently structured and can plot all the calculated data.

10.4 Output of Modeller 157

The generated m-Þle is subdivided into a number of subfunctions and is
organised as follows:

� Initialisation information. In this part of the output all stream matrices,
null spaces and other initialisation information parts are calculated and
all global parameters are initialised.

� Call solver and build output. The solver is called with the initialisation
information. After solving the deÞned constants of all modelling ob-
jects as well as other information (such as names or present species) is
mapped to the output variables. During solving the dynamic variables
are mapped to the output variable via the function OutputBuild.

� Main code. This part is called at least every time step during calculation
and is subdivided as follows:

� For each system the secondary state variables are calculated form
the primary state variables.

� For each connection all connection variables are calculated from all
previously calculated variables.

� For each reaction all reaction variables are calculated from all pre-
viously calculated variables.

� All differential equations are set up for computing the next time
step via the DAE solver. Also all equations (such as constraint
equations or steady state balance equations) from which variables
have to be calculated numerically via the DAE solver, are set up.

� Additional code. In this last part functions, such as a stream matrix
calculation function, or a selection matrix construction code, are listed
that are called on by the previous code.

The generated output Þle can be executed by simple entering the name of
the Þle in the Matlab command window.

158 Construction of the Equation Topology

Part III

Examples and Conclusions

159

Chapter 11

Examples

In this chapter the modelling method is illustrated with some examples. These
examples try to show that modelling does not have to be a difficult and time
consuming task when adhering to the Þve step modelling method. Using a
computer program, which builds on a structured modelling approach, such as
the Modeller, can seriously speed up the construction of dynamic physical-
chemical-biological process models.

The examples are structured as follows:

1. Problem Description. Process models are always established for a
certain purpose, which the person, who establishes the model, has in
mind as he works on it. Thus, for each example, a short motivation and
objective of the model is given.

2. Step 1: Physical Topology. For each example a simple model struc-
ture is mapped out. It is one of the inÞnite many possible, but also one
of the most obvious choices for the posed problem.

3. Step 2: Species Topology. The deÞnition of the species topology
requires the deÞnition of the species sets, the reactions and the perme-
abilities and directionalities of all mass connections. With the species
topology being deÞned, the component mass balances are established.

4. Step 3: Balance Equations. Although the balance equations are
generated automatically with the information of the Þrst two steps, it
is, in some cases, interesting to have a closer look at them.

5. Step 4a: Connection and Reaction Equations. The transfer laws
and kinetic laws that express the ßow and production rates are chosen.
In the case of unmodelled ßows or reactions the appropriate constraining
assumptions are deÞned.

161

162 Examples

6. Step 4b: System Equations and Control. For each system within
the physical topology the secondary state variables, which are used to
describe ßows and reactions, are linked to the primary state variables
(component mass and energy) through a set of deÞnitions.

7. Discussion. The outcome of the modelling session is discussed and
analysed with respect to the given objective of the model. Also, if nec-
essary, the dynamic behaviour of the information processing units, such
as controllers (Step 5) is added and discussed

When constructing process models these steps do not necessarily have to
be done is this exact sequence. Sometimes it can even be handy to (partially)
interchange some of the steps in the sequence. Especially steps 4a and 4b can
easily be interchanged. It should be noted, though, that, in general, changes
in earlier steps will inßuence the later steps and that changing later steps will,
in general, have no effect on the deÞnition of earlier steps.

11.1 Tank With Level Measurement

11.1.1 Problem Description

Figure 11.1: Tank with level
glass

(This example is taken from (Preisig 1996)).
It is often desired to control, or at least mea-
sure the liquid level in a continuously stirred
tank reactor. For this purpose one could at-
tach a vertical, see-trough tube to the tank
which is connected to a terminal at the bot-
tom of the tank. Often, the connecting pipe
is of small diameter or has a safety valve built
in. It is of interest to explore what the level
measurement shows as the tank is operating
in a dynamic mode, as the level may change
relatively rapidly in the tank due to ßuid that
is fed or removed from the tank.

11.1.2 Step 1: Physical Topology

The physical topology is easily constructed when the contents of both the
tank and the level glass are considered to be ideally mixed. A source and sink
system are introduced, since connections can only exist between two systems
(this prevents connections from �dangling�).

11.1 Tank With Level Measurement 163

Figure 11.2: Physical topology for the levelglass problem.

11.1.3 Step 2: Species Topology

Since we are only interested in the level measurement, we require only total
mass or one component, which is present in all systems and all connections of
the physical topology.

11.1.4 Step 3: Balance Equations

The energy balance is not relevant for this problem. Thus, only the mass
balances of the tank and the level glass are required:

µ
ún1
ún2

¶
=

µ
1 −1 −1
0 0 1

¶ �n1
�n2
�n3

 (11.1)

Note: throughout the entire thesis, we have always used the molar mass bal-
ances. The step to mass (in kg) is easily made by multiplying the molar mass
n [mol] of a component with its speciÞc molar mass M [kg/mol].

11.1.5 Step 4a: Connection and Reaction Equations

We choose to express the mass ßow rates in terms of volumetric ßow rates.
For an arbitrary mass stream �n, the mass ßow rate is expressed in terms of
the volumetric ßow and the density:

�nmi = ρmi �Vmi (11.2)

where ρmi is the density (in mol/m
3) of the mass stream i, and �Vmi is the

respective volumetric ßow rate (in m3).

Assuming that the mass stream ßows between the elementary systems 1
and 2, the density of the mass stream will be the density of the substance in

164 Examples

the system from which the stream originates:

ρm3 =

½
ρ1 if �V3 > 0

ρ2 if �V3 < 0
(11.3)

Using the �sign�-function, this can also be written as

ρm3 =
1

2

³³
1 + sign �V3

´
ρ1 +

³
1− sign �V3

´
ρ2

´
(11.4)

For x 6= 0 this sign-function can be interpreted as
sign (x) =

x√
x2

(11.5)

In this case, however, we shall assume that the density of the liquid is constant
in all parts of the process. That is, for each density we have:

ρ1 = ρ2 = ρ (11.6)

and consequently

�nmi = ρ�Vmi (11.7)

The volumetric ßow rate from the tube to the level glass is driven by the
difference in static pressures p at the bottom of the two vessels. The following
relation is a good candidate for expressing this rate:

�V3 = c

s
|p1 − p2|

ρ
sign(p1 − p2) (11.8)

where c represents the valve constant including the resistance effects of the
pipe.

11.1.6 Step 4b: System Equations

It this step we need to deÞne all the needed secondary state variables. The
deÞnitions account for both systems (Σ = 1, 2) in this case.

As we are interested in a model that accounts for the levels, it is useful to
use the expression:

pΣ = ρghΣ (11.9)

which links the hydrostatic pressure pΣ (introduced in equation 11.8 describing
the ßow between the two systems) as a function of the liquid height hΣ of the
system Σ. g is the gravity constant. In the case of cylindrical tanks we get:

hΣ =
VΣ
AΣ

(11.10)

11.1 Tank With Level Measurement 165

in which AΣ is the cross-section area of the tank and the dynamically changing
volume VΣ is deÞned as

VΣ =
nΣ
ρ

(11.11)

All secondary state variables (pΣ, hΣ and VΣ) are now linked to the primary
state variable (nΣ).

11.1.7 Discussion

Figure 11.3: Height of liquid in the tank and in the levelglass as a function of
time

Figure 11.3 shows a possible response of the liquid height in the tank and
level glass if the inßow is stopped and at a certain time started again. As one
can see, the level glass lags behind the �real� height of liquid in the tank, which
can be ascribed to the small diameter of the interconnecting pipe (reßected
in the value of the valve constant c). The phase lag of the level glass can be
reduced by increasing the value of the valve constant c (for example, by open-
ing the valve and thereby creating a larger diameter for the interconnection),
such that the ßow through the interconnecting pipe increases.

A controller that controls the liquid height in the tank via the inßow with
measurements of the height in the level glass will, of course, be more difficult
to implement and tune than a controller that gets its input directly from the
tank itself. The measurements that are needed for control should always be
taken as close as possible to the system(s) that actually needs to be controlled.

166 Examples

11.2 Extraction Process

11.2.1 Problem Description

Figure 11.4: Co-current extraction process.

The process consists of two tanks (a reaction and a product tank) that are
separated via a semi-permeable membrane. The reaction tank is fed with two
feed streams, one containing the reactant A dissolved in inert solvent D, the
other feeds reactant B dissolved in D. In the tank, a reaction that forms the
wanted product C takes place: 2A + 3B À 8C. The reactions is exothermic
and the generated heat is removed by a cooling device, which is Þlled with
a coolant Q. The membrane separating the two tanks is only permeable for
the product C. The product C enters the product tank, which is fed with
solvent E, via diffusion through the membrane. The diffusion rate is driven
by the difference in chemical potential (approximated with concentration in
this case) of the two phases. Both tanks have an outlet ßow.

A model of this process could give better insight in how the concentration
of the product C in the solvent E can be increased.

11.2.2 Step 1: Physical Topology

A simple model structure is mapped out in Þgure 11.5. Clearly, there are two
mass domains in this physical topology. One is the reactor/extractor and a
second is the cooling medium. The heat connection between the cooler and the
reaction phase connects the two domains to form an interconnected network.
If this connection would not be there, we would have two sperate models that
do not inßuence each other.

11.2 Extraction Process 167

Figure 11.5: Physical topology of the extracting reactor.

11.2.3 Step 2: Species Topology

The deÞnition of the species topology requires the deÞnition of the species
set, the reactions in all systems and the permeabilities and directionality for
all mass streams. Often one deÞnes the complement of the permeabilities
because the default is a mass transfer of all species, thus with a permeability
that includes all species. In this case, all mass streams are uni-directional and
are transferring all species, with exception of the mass transfer between the
two phases. This interface is assumed bi-directional and permeable only for
species C.

Figure 11.6: Species topology of extraction process.

168 Examples

The plant species set S and reaction set R are deÞned as follows:

S = {A,B,C,D,E,Q}
R = {2A+ 3B À 8C}

In this case, the species topology is initiated by deÞning which species are
present in the source systems, deÞning where the reaction takes place and by
deÞning the directionalities and permeabilities of the mass connections. The
resulting species topology is visualised in Þgure 11.6.

11.2.4 Step 3: Balance Equations

Both mass and energy balances are required for this problem. The component
mass balances of the systems 8.1, 8.2 and 8.3 can be abstracted by:

ún = Γ
Σ
A
k
ΓT
m
�n+ Γ

Σ
ST
Σ
ξ (11.12)

where the different matrices are easily calculated from the physical topology
and species topology. If we assume constant pressure or negligible pressure
differences, the enthalpy balance reads:

úH = A
m
�Hm +Aq�q (11.13)

The interconnection matrices A
m
and A

q
are deÞned as:

A
m

=

 −1 1 0 0 0 0 0 0
0 0 1 1 0 −1 0 −1
0 0 0 0 1 0 −1 1

 (11.14)

A
q
=

 −11
0

 (11.15)

The structure of the matrices Γ
Σ
, Γ

m
and S

Σ
is given in Þgure 11.7 and

shows very nicely which species are present in each system, connection or
reaction.

11.2 Extraction Process 169

Figure 11.7: Structure of the matrices Γ
Σ
, Γ

m
and S

Σ
.

11.2.5 Step 4a: Connection and Reaction Equations

For all (unidirectional) mass ßows except mass ßow m8 the following relations
are given:

�nmi = cor �Vmi (11.16)

�Hmi = hTor�nmi (11.17)

in which
cor :: Concentration in the origin system of mass connection i
hor :: Vector of molar enthalpies in the origin system

Mass connection 8 is bi-directional, so the involved equations are a bit
more difficult to read:

�nmi = k(cor − ctar) (11.18)

�Hmi =
1

2
((I+ diag (sign(�n)))hor

+ (I− diag (sign(�n)))htar)T �n (11.19)

170 Examples

where
I :: Unity matrix

diag(x) :: Operator which makes a diagonal matrix
with vector x on its diagonal

ctar Concentration in the target system of mass connection i
htar :: Vector of molar enthalpies in the target system

The deÞned semi-permeability of the connection (i.e. the fact that not all
species deÞned in the origin and target of the connection ßow through the
connection) is dealt with by the computer implementation.

The heat ßux through the heat connection is simply modelled by:

q = UA(Tor − Tor) (11.20)

The reaction in system 8.2 is modelled as a kinetic rate expression:

r = kfcAcB − kbcC (11.21)

11.2.6 Step 4b: System Equations

For each system the secondary state variables c, T and hneed to be deÞned.
In the source and sink systems they can be given as input parameters, but
in the dynamic systems they need to be deÞned as a function of the primary
state variables (n and H):

c =
n

V
(11.22)

h = h0 + cp(T − Tref) (11.23)

H = nTh = nT (h0 + cp(T − Tref)) (11.24)

The temperature T can be calculated from equation 11.24.

11.2.7 Discussion

A possible response of the concentrations in the reaction and extraction phase
to a step change in the inlet concentrations is plotted in Þgure 11.81. Figure
11.9 shows the response of the temperatures in the cooler and the reaction
and extraction phase. It is assumed that there are no heat losses to the
environment and the reaction and extraction phase are isolated from each
other, such that the extraction phase only heats up by diffusion of product C
through the membrane.

1The values of the parameters are purely academic and choosen such that the dynamics
of the involved processes (i.e. reaction and diffusion) are both visible.

preisig
:: missing

11.2 Extraction Process 171

Figure 11.8: Concentration of reactants and products in the reaction and
extraction phase.

Figure 11.9: Response of the temperatures off all lumps.

This model was build within an hour (with the most time spent on Þnding
�nice� parameters) and yet shows clearly all assumptions that have been made
(i.e. time scale assumptions (physical topology), species distribution (species
topology), reaction kinetics, heat ßows, etc.). An example of the documenta-
tion Þle and code Þle that can be generated for this model by the Modeller is
given in Appendix B. The code Þle is chosen to give all deÞned parameters
and variables as output. A small Matlab program was written to very easily

172 Examples

access and plot the output information.

The assumptions made for this model can be very easily changed. For
example, a very fast (equilibrium) reaction, very fast diffusion (unmodelled
ßow rate) or very fast heat conduction could be considered. Also, the number
of lumps could be changed (for example, by applying the repetitive structure
functionality) in order to more accurately describe the mixing processes taking
place in both phases. No matter what changes are made, it will be clear (also
to persons who did not model this model themselves) which assumptions have
been made.

A similar model structure could have been used for a process consisting of
one tank with immiscable phases. If the reaction is considered to take place at
the phase boundary, things become a little bit different. An example of such
a process is given in the next paragraph.

11.3 Dynamic Flash

11.3.1 Problem Description

Figure 11.10: Flash unit

In this example, a two-phase ßash unit is considered. A liquid feed stream
enters the ßash unit. The liquid is heated and is assumed to be in thermo-
dynamic equilibrium with its gas phase. The goal of the ßash unit is to (at
least partially) separate the components that entered the unit. The dynamic
modelling of processes involving phase equilibrium has had considerable at-
tention over the years and a lot of approaches to solving the problem have
been proposed. Most proposals are (mostly not-trivial) work arounds in order
to get to a solvable model, because no systematic modelling methodology is

11.3 Dynamic Flash 173

around and people are not familiar with steady-state assumptions, fast ßows
and equilibrium reactions.

When our structural modelling method is adhered, the modelling becomes
easy and, additionally, it becomes very clear (also to people that did not
develop the model themselves) where and what assumptions have been made
in order to get to the end result.

11.3.2 Step 1: Physical Topology

Figure 11.11: Physical topology of the ßash unit

The ßash unit is divided into two phases (a liquid and a gas phase) that are
separated from each other via a phase boundary. At the phase boundary the
two phases co-exist and this is also the place where the equilibrium reactions
(liquid À gas) take place. The liquid phase is heated via a heat transfer from
an energy source.

11.3.3 Step 2: Species Topology

In this example we will look at only 2 components that need to be separated.
With our method a phase transition is a reaction and the liquid and gas
components are different species (because these species have (very) different
properties). The plant species and reaction sets therefore become:

S = {A, a,B, b}
R = {AÀ a,B À b}

Figure 11.12 shows the species topology, which is laid on top of the physical

174 Examples

Figure 11.12: Species topology for the ßash problem.

topology. The connection from the liquid phase to the boundary is only per-
meable for the liquid components (A and B) the connection from the boundary
to the gas phase only for the gaseous components (a and b). The diffusion of
components to and from the phase boundary are considered to very fast. The
mass connections 2 and 3 are therefore fast (or unmodelled) connections.

The two reactions are taking place at the phase boundary, at which the
liquid and gas phase co-exist.

11.3.4 Step 3: Balance Equations

Since there are unmodelled connections and reactions deÞned, there is an index
problem that needs to be resolved. The rates of the unmodelled objects are
of no interest and therefore the index problem can be resolved by applying
the Simple Index Reduction method. In the following I will completely write
out the component mass balance equations in order to show the effect of
the index reduction and the steady-state assumption. The computer program
Modeller uses a matrix notation to resolve the problems. The following balance
equations can be substracted from the information of the physical and species
topology:

únA,1 = �nA,m1 − �nA,m2 − �nA,m5 (11.25)

únB,1 = �nB,m1 − �nB,m2 − �nB,m5 (11.26)

únA,2 = �nA,m2 − rA (11.27)

11.3 Dynamic Flash 175

únB,2 = �nB,m2 − rB (11.28)

úna,2 = −�na,m3 + rA (11.29)

únb,2 = −�nb,m3 + rB (11.30)

úna,3 = �na,m3 − �na,m4 (11.31)

únb,3 = �nb,m3 − �nb,m4 (11.32)

Applying the Simple Index Reduction Algorithm to remove the unmodelled
quantities �nA,m2, �nB,m2, �na,m3, �nb,m3, rA and rB gives:

únA,1 + únA,2 + úna,2 + úna,3 = �nA,m1 − �na,m4 − �nA,m5 (11.33)

únB,1 + únB,2 + únb,2 + únb,3 = �nB,m1 − �nb,m4 − �nB,m5 (11.34)

and with the steady-state assumption of the phase boundary this becomes:

únA,1 + úna,3 = �nA,m1 − �na,m4 − �nA,m5 (11.35)

únB,1 + únb,3 = �nB,m1 − �nb,m4 − �nB,m5 (11.36)

In the case we would not have made the equilibrium reaction assumption, the
balances obviously would have become:

únA,1 = �nA,m1 − �nA,m5 − rA (11.37)

únB,1 = �nB,m1 − �nB,m5 − rB (11.38)

úna,3 = −�na,m4 + rA (11.39)

únb,3 = −�nb,m4 + rB (11.40)

In any case, these equations, together with the equilibrium relations for the
unmodelled objects, form an index-one DAE, which can be solved by standard
integrators.

If the heat transfer is also considered to be fast (to and from the phase
boundary), the enthalpy balance results in:

úH1 + úH3 = �Hm1 − �Hm4 − �Hm5 + q1 (11.41)

in which the time derivative of the pressure is considered to be negligible.

176 Examples

11.3.5 Step 4a: Connection and Reaction Equations

The mass ßows through the mass connections m1, m4 and m5 are considered
to be uni-directional and are given by:

�nmi = cor �Vmi (11.42)

For connection m1 the volumetric is given. For m5 it is modelled as a
function of the height of ßuid of the liquid phase (i.e. the origin system of the
connection):

�Vm5 = αhor (11.43)

The volumetric ßow rate of connection m4 is modelled as a function of the
difference in pressure between the gas phase and the gas sink:

�Vm4 = β(por − ptar) (11.44)

The ßows to and from the phase boundary is considered to be �fast� and
therefore the mass ßows of the involved connections remain unmodelled. The
equilibrium relations of the semi-permeable mass connections m2 and m3 are
given respectively by:

xor = xtar (11.45)

and

p
i,or

= p
i,tar

(11.46)

where xor and xtar represent the fractions of liquid phase components and
p
i,or

and p
i,tar

represent the partial pressures of the gas phase components.

The equilibrium �reactions� between the gas phase and liquid phase are
modelled with Raoults law:

pa = xAp
sat
a (11.47)

and

pb = xBp
sat
b (11.48)

in which psati is the saturation pressure of the pure gas component i.
The temperature dependence of the saturation pressure can be modelled

by the Antoine relation:

psati = exp(Ai − Bi
Ci + Tsys

) (11.49)

11.3 Dynamic Flash 177

where Ai, Bi and Ci are the Antoine constants of component i and Tsys is the
temperature in the system..

The equations of the unmodelled objects clearly link the secondary state
variables (and therefore, indirectly, also the primary state variables) of the
involved systems to each other. This is necessary to make sure that the index
problem, introduced by these unmodelled objects, can be properly dealt with,
such that an index-1 process model results.

11.3.6 Step 4b: System Equations

The connections connected to the liquid phase system dictate that the sec-
ondary variables x, c, h and T should be deÞned. If the (molar) density of the
liquid phase ρl and the cross section area A are assumed to be constant, the
following deÞnitions could result (presented in block-lower-triangular form):

nt = eTn (=
X
∀i
ni) (11.50)

Vl =
nt
ρl

(11.51)

c =
n

Vl
(11.52)

x =
n

nt
(11.53)

h =
Vl
A

(11.54)

H = nTh = nT (h0 + cp(T − Tref)) (11.55)

For the gas phase system the variables c, pi, p and T need to be deÞned.
The total volume Vt of the ßash unit is constant and therefore the volume of
the gas phase is considered to be

Vg = Vt − Vl (11.56)

The partial pressures of the gas components are calculated via the ideal gas
law:

p
i
=

nRT

Vg
(11.57)

p = eTp
i

(11.58)

c =
n

Vg
(11.59)

H = nTh = nT (h0 + cp(T − Tref)) (11.60)

178 Examples

11.3.7 Discussion

The phase equilibrium reactions are considered to be very fast, which means
that the liquid phase and gas phase are always in equilibrium. A slight change
in the input concentrations and/or ßow rate will therefore directly affect the
output concentrations and/or ßow rates of the components in both phases. If
the value of β in equation 11.44 is very large, this means that the pressure of
the gas phase above the liquid phase will constantly have almost the same value
(high gain control). A Þxed value of this pressure means that the composition
of the gas phase and, consequently, also of the liquid phase is Þxed. A change
in input conditions will therefore only reßect in the volumes of the two phases
(see Þgure 11.13 a and c).

If the value of β is low, a change in the input concentrations will almost
not affect the liquid levels of the phases, but the composition of both phases
will change (see Þgure 11.13 b and d).

Figure 11.13: Simulation of ßash example with high (a and c) and low (b and
d) value for β.

Figure 11.13 shows a simulation run for both a large and a small value for
β. The input conditions for both simulations are as follows:

At Þrst the liquid input ßow rate and input concentrations are such that
the pressure of the vapor is exactly equal to the environment pressure. There
will be no gas ßow at this point. At point (1), the fraction of the more volatile
component A is increased linearly, such that the saturation pressure above

11.4 Distillation Column 179

the liquid will increase. A gas ßow and/or decrease in liquid volume will be
the result. At point (2), the increase is stopped. At point (3), the volumetric
ßow rate of the input is doubled And at point (4), the volumetric ßow rate is
changed back again. To keep the discussion simple, thermal effects where not
taken into consideration.

11.4 Distillation Column

11.4.1 Problem Description

Figure 11.14: Distillation tower and a suggested (simple) physical topology.

A description of a distillation column has already been given in example 3.4.
In this example, though, we will consider a slightly different physical topology
for the trays. In order not to make things too complex we consider the column
to consist of Þve trays, a reboiler and a condenser (as shown in Þgure 11.14).

11.4.2 Step 1: Physical Topology

The left picture in Þgure 11.15 schematically shows a small part of the distil-
lation column (namely two trays). Each tray consists of two phases, a liquid
phase and a vapor phase, which are assumed to be ideally mixed. The vapor
phase is considered to be in (or at least very close to) equilibrium with the

180 Examples

liquid phase it is just above. The vapor phase comes in contact with the liq-
uid phase just above it and condenses over there. So, these two phases are
considered to have (almost) the same composition. If not all vapor is consid-
ered to condense in the tray above, a gas ßow could be considered from the
vapor phase to the vapor phase in the next tray. A connection should then be
deÞned between these two phases, the ßow through which could be driven by
a pressure difference. The liquid on a tray can ßow to a lower tray if the tray
is ßooded (which it usually is).

Figure 11.15: Physical representation of a tray and a physical topology of it.

A physical topology of a tray of the distillation column is presented in
the right picture of Þgure 11.15. Using a tray as a repetitive cell (explained
in section 8.6), a distillation column of any number of trays can be easily
build. After generating the repeated structure the parts that should be slightly
different, such as the feed tray, the reboiler and the condenser, can be easily
modiÞed.

11.4.3 Step 2: Species Topology

The species distribution in each tray is similar to that of the previous example
(the dynamic ßash). The liquid phases hold the liquid components (A and B),
the gas phases hold the vapor components (a and b) and the phase boundaries
hold all components as well as all phase reactions.

11.4 Distillation Column 181

11.4.4 Step 3: Balance Equations

The component mass balances of all the systems in the physical topology can
be abstracted by

Ω
1
ún = Ω

1
Γ
Σ
A
k
ΓT
m
�n+Ω

1
Γ
Σ
ST
Σ
ξ (11.61)

or by

Ω
2
ún = Ω

2
Γ
Σ
A
k
ΓT
m
�n (11.62)

if all reactions are considered to be equilibrium reactions. The matrices Γ
Σ
,

A
k
, ΓT

m
and ST

Σ
are calculated from the physical topology and species topology.

The matrix Ω
1
or Ω

2
is a non-square matrix, which is computed from the

unmodelled objects as explained in paragraph 6.3.1.
If we assume negligible pressure differences, the enthalpy balances read:

Ω
3
úH = Ω

3
A
m
�Hm +Ω3Aq�q (11.63)

11.4.5 Step 4a: Connection and Reaction Equations

The connection and reaction equations are, in principle, very similar to the
ones deÞned in the previous example, with the exception of the reaction taking
place in the phase boundary above the vapor phase (system 3.3.4). Since the
vapor phase is considered to have the same composition as the liquid phase
just above it, the following relation can be deÞned:

xliq = xvap (11.64)

in which, xliq is the vector of fractions of the liquid components in the liquid
phase and xvap is the vector of fractions of the gas components in the vapor
phase. If a reaction rate is modelled, the following relation could be considered:

r = k(xliq − xvap) (11.65)

where a large k would give the same results as deÞning an unmodelled reaction
and lower values for k would introduce some more �dynamics� between the
compositions of the two phases.

11.4.6 Step 4b: System Equations

As with the connection and reaction equations, the system equations are sim-
ilar to the ones deÞned in the ßash unit example. The only major difference
between the two examples is the number of systems and connections that are
deÞned.

182 Examples

11.4.7 Discussion

A distillation column may be viewed as a set of integrated, mostly cascaded,
ßash tanks. The integration, however, gives rise to a complex and non-intuitive
behaviour, and it is difficult to understand the distillation column based on
the knowledge about the behaviour of the individual pieces (the ßash tanks)
(Skogestad 1997).

The purpose of this example was to show how a larger scale model can
be easily set up using the modelling methodology and its implementation,
presented in this thesis. This example shows that with growing complexity
of models, the modelling itself does not and should not become exponentially
more time consuming and/or difficult.

A thorough discussion of a distillation column would be very lengthy (many
textbooks have been written on this topic). For more information about dis-
tillation columns I, therefore, refer to the abundance of material written on
this subject (e.g. (Rademaker 1975), (Buckley 1985), (Shinskey 1984)).

Chapter 12

Conclusions and Future Work

In this chapter the main conclusions are drawn with respect to the developed
modelling methodology and its implementation and suggestions are given for
further research on both modelling and implementation.

12.1 Conclusions

12.1.1 Systematic Modelling Methodology

In this work a systematic modelling methodology for the construction of dy-
namic process models was developed and implemented in a computer-aided
modelling tool. This tool, called �theModeller�, was developed to help model
designers with a systematic construction of physical-chemical-biological pro-
cess models. It supports hierarchical model development based on the funda-
mental principles through an interactive, graphical user interface.

The development of the process models is done in Þve steps. In the Þrst
step, the user must establish a physical structure of the process. This structure
represents the users view on the physical containment of the process. This
means that the process is decomposed into simple thermodynamic systems and
physical connections that represent the interactions between these systems.
The simple thermodynamic systems, which represent lumped capacities able
to store extensive quantities, and the connections, which represent paths for
the transfer of these quantities across the common boundaries of the systems,
form the physical topology of the process. To aid in the handling of large and
complex processes, the physical topology is organised in a strictly hierarchical
multi-way tree. A special user interface was implemented in the modelling tool
to handle this tree structure and its graphical representation on the screen.

In the second stage a species topology is superimposed on the physical
topology, describing the distribution of chemical and/or biological species
among the deÞned simple systems. The species topology uses the concept

183

184 Conclusions and Future Work

of permeability, which enables the deÞnition of selective transfer of species,
and the concept of reaction, which is used to deÞne species reactions within a
system.

With the information of the Þrst two steps, the balance equations of all the
relevant extensive quantities can be automatically generated in the third step.
The rigorous implementation of the rule that connections may only be deÞned
between two simple thermodynamic systems, combined with the introduction
of a reference co-ordinate system for each connection, results in the generation
of symbolic balance equations which are consistent within the context of the
user-deÞned structure of the model.

The fourth step consists of the deÞnition of the mechanistic details, which
means that the transfer laws of each transfer are deÞned and that additional
relationships, such as kinetics, physical property relations and geometric re-
lations are introduced in the model. Also assumptions (such as steady-state
assumptions and order of magnitude assumptions) that constrain the original
model can be introduced at this stage. The index-problems that can result
from introducing constraints, can be easily resolved by applying either the
Simple or Full Index Reduction Method to the affected local domain.

In the Þfth step information processing units, such as controllers, can be
added to the model deÞnition.

After completion of these steps, theModeller is ready to generate consistent
model equations. The resulting dynamic model will always be an index 1 DAE,
which can either be used for direct solving of speciÞc problems, or be further
modiÞed by applying mathematical manipulations, such as linearisation or
model reduction.

The software tool is designed to effectively assist a model designer with the
construction of consistent process models and to (very) signiÞcantly reduce the
needed time effort. With the modelling tool, the process models can be built
using two main operations, namely reÞning existing systems (the top-down ap-
proach) or grouping systems (the bottom-up approach). These two operations
can be used promiscuously and all performed actions can be undone (multi-
ple undo/redo mechanism). The software allows to store, retrieve, import or
export models (or parts of models) at any stage of the model deÞnition. This
allows for a safe mechanism of model reuse.

Reßecting back on the main questions that where posed in chapter 1 of
this thesis, the following could be said:

1. The methodolgy that was outlined in this thesis, as well as the many
examples that were worked out, show that there is certainly much more
structure in the process of modelling than is generally thought. By ad-
hering to the Þve step modelling methodology, modelling automatically

12.1 Conclusions 185

becomes more of a science than an art. It makes modelling straightfor-
ward and transparent.

2. Using this structured methodology will speed up the modelling process
signiÞcantly. A proof for this can be found in the fact that the exam-
ples in chapter 11 were setup and worked out in an amazingly short
period of time. The software recently found an industrial application in
which it could be compared in terms of efficiency and reliability with the
traditional modelling approach of a highly educated chemical engineer.
Whilst the Þrst models were established over a period of a PhD, with the
software it was a matter of weeks to establish a whole set of new models.
Here it should be mentioned that the main effort was not on Þnding
and modifying model structures and writing input Þles to solvers, but
the main effort was spent on Þnding appropriate physical property data
and corresponding descriptions. The software Modeller thus increased
efficiency at least one order of magnitude.

3. Models are not only increasingly substituting for experimental work,
but are basic ingredients to all aspects of process design, control and
operations. Thus there is a great need for process models of different
accuracy and with different focus on details. Quick and correct modelling
of processes is thus obviously of central interest.

The Modeller project had the objective to implement a formal procedure
for the construction, maintenance and modiÞcation of process models.
The theory is based on basic physical principles, thus is in its core white-
box modelling, but enables the use of black-box components for the de-
scription of transfer, properties and kinetics. Thus overall it implements
a grey-box modelling approach. Theory was developed and later imple-
mented that allows for the introduction of order-of-magnitude assump-
tions such as fast ßows, reactions, small capacities, phase equilibria,
constant properties and constant volumes, to mention the main ones.
The resulting mathematical problems are resolved internally. In some
cases these assumptions have no effect on the equation structure, whilst
in other cases index problems are generated. The theoretical develop-
ment focused on resolving these problems for each type of assumption.
The software generates always index 1 DAEs, thus structurally solvable
equations systems

Although the computer can make the modelling task a lot easier for
model designers, the main order-of-magnitude assumptions and model
details will always depend on the application for which the model is to
be used, the amount of accuracy that has to be employed and the view
and knowledge the model designer has on the process. This information

186 Conclusions and Future Work

cannot be captured in any computer program.

12.1.2 Minimal Representation of Process Models

A new concise, abstract canonical form, which is able to represent a very wide
range of dynamic equations of Þrst-principle process models, was presented.
It is called canonical, because it is minimal whilst, at the same time, showing
all the structural elements of the process models clearly. The deÞnition of
two basic structural elements, namely the physical topology and the species
topology, was shown to be sufficiently rich to yield this minimal representa-
tion of mass and energy transfer networks. The resulting algebraic structures,
mostly sparse matrices and vectors, are simple to generate and easy to inter-
pret. Moreover, the canonical form allows us to formalise important model
reduction methods, which implement common order of magnitude assump-
tions, such as extremely fast reactions and unmodelled streams. The achieved
formalisation is the basis of our model-generating software tool, theModeller.

Another advantage of the concise canonical form was that a bridge to (lin-
ear) state space models could be easily established, such that all the analysis
tools, that have been developed for linear models over the years, could be used
on models that are developed (and linearised) with our modelling methodol-
ogy.

A disadvantage of many modelling languages (such as Modelica) is that a
lot of redundant equations (for example: �concentration in system equals con-
centration in mass connection�) are being generated, because so-called �Ports�
or �Connectors� are being used for the transfer of information from one mod-
elling object to another. Some of the languages actually remove those redun-
dant equations again during the compilation of the model. But since these
equations are, in my opinion, obsolete, they should not have been introduced
in the Þrst place. Modeller only lists those algebraic equations that were ac-
tually deÞned by the model designer.

Another disadvantage that is often seen in other model generating prod-
ucts, is that these do not give direct access to the code that is generated.
The code generator and the solver are usually directly linked. The code that
is generated, after compilation of the model, is directly passed to the inte-
grated solver and is hidden from the end user. It is therefor not clear what
kind of actions have been performed on the model and the model designer
does not know how the index reductions, substitutions and other (automated)
mathematical transformations have affected the model. The Modeller is a
�stand-alone� model generator that is not connected to any speciÞc problem
solver. It generates an output Þle, containing the mathematical model, which
can be easily modiÞed by the end user. Another advantage of this open struc-
ture and the structured output of the Modeller is that the user can build his

12.1 Conclusions 187

own �translator�, which can translate the output Þle, such that it can serve
as an input to his own solver programs.

12.1.3 Automatic Documentation of Assumptions

Process models are always established for a certain purpose, which the person,
who establishes the model, has in mind as he works on it. For every natural
system, natural in distinction to mathematical, one has a choice from a large
variety of possible models. Which one is chosen depends largely on the purpose
and the experience of the model designer. The model is thereby of secondary
importance. The designer has an ultimate objective in mind for which the
model is only one component: a necessary means to achieve the objective. It
is thus not too surprising that a model designer does not necessarily document
all the decisions taken during the modelling process. Consequently, the open
literature is rich on models that are badly documented or not documented at
all.

The main objective of this work was to introduce a step-by-step approach
to modelling. An important advantage of the developed modelling methodol-
ogy is that all introduced assumptions are automatically �highlighted�. When-
ever an assumption is made, it is very clear where the assumption is made and
what the impact will be on the model. This is very important, because if
the application of a model shows that the model was not good enough, then
it is the assumptions that must be examined Þrst for their viability. Thus
models are developed in well-deÞned steps and all elements, including the as-
sumptions are introduced in explicit form. This makes assumptions very easily
retractable and changeable.

12.1.4 Local Handling of Assumptions

All assumptions that are made during the modelling process always affect
only a local domain (namely the domain for which the assumption is made).
For example, a fast ßow assumption only affects the connection for which the
assumption is made and the two interconnected systems. The problems that
are a result of constraining assumptions are always handled locally, which
means that there is no exponential growth of complexity when the model
increases in complexity.

Most assumptions can be handled via matrix operations, leaving the �orig-
inal model� intact. This is, again, a good way of keeping track of all the as-
sumptions that have been made and a good way to see what the effects of the
assumptions are on the original model.

188 Conclusions and Future Work

12.1.5 Education

The modelling of chemical-physical-biological processes is one of the most
important tasks of a process engineer, for these models are used on a large
scale for all kinds of engineering activities, such as process control, optimisa-
tion, simulation, process design and fundamental research. The construction
of these models is, in general, seen as a difficult and very time consuming
task and is preferably handed over to �modelling experts�. Likewise, most of
the undergraduate chemical engineering curricula are model-based. However,
the lack of formalisation and systematisation associated with model develop-
ment leads most students and engineers to view modelling as an art, not as a
science. In many cases, the emphasis of courses, which cover model develop-
ment, shifts to mathematical techniques needed for the solving of differential
and algebraic equations for speciÞc cases. The fundamental concepts needed
to develop the models is often pushed to the background. Also, in existing
chemical engineering courses the emphasis is mostly on steady-state modelling
and dynamic modelling is regarded as a difficult special case. Steady-state
models are, however, derived from dynamic models, which essentially makes a
steady-state model a special case of a dynamic model.

In this thesis a systematic approach to model development was presented.
Also a number of difficulties (and their solutions) model designers can run into
during model development where classiÞed and some, often unnecessary but
frequently seen, mathematical manipulations, such as symbolic substitutions,
were criticised. By developing a course in which the concepts, presented in
this thesis, are applied, students and engineers could learn that formulating
(and solving) dynamic process models does not have to be difficult. Also,
the emphasis of such a course could be laid on fundamental principles, such
that students may develop a better understanding of the basic principles and
the impact of imposed assumptions. Unfortunately, due to unforeseen circum-
stances, we were not able to setup such a course (yet).

The Modeller provides the tools for developing relatively complex models
in a quick and easy manner. Because the balance equations are generated au-
tomatically and the algebraic equations of each modelling object can be picked
from an appropriate list of alternatives, the tedious, time consuming and error-
prone tasks can be avoided. From this point of view, theModeller would be a
valuable aid in the teaching of chemical process modelling, especially for those
students, who are less experienced with computer programming.

12.2 Suggestions for Further Research

Several issues remain to be resolved. For both the modelling and the imple-
mentation part I propose some directions that could be followed for further

12.2 Suggestions for Further Research 189

research or development.

12.2.1 Modelling

From a theoretical viewpoint, this work could be extended in several directions,
some of which are:

� The modelling methodology is currently limited to handling of lumped
systems. It should be extended to also cover distributed systems or at
least have the possibility to mimic the behaviour of distributed systems
(for example with a large number of lumped systems) in an easy and
structural way. Since a distributed system is a function of position, a
coordination system is used to represent this type of systems. Hence,
the main problem in extending to distributed systems is in connecting a
lumped system with a distributed system or a distributed system with
another distributed system. Another problem that needs to be resolved is
the fact that the balance equations of distributed systems almost always
balance intensive (c.q. secondary state) variables1. In our modelling
methodology for lumped systems the differentiated variables are always
extensive (c.q. primary state) variables. A clear and consistent link
between these two cases should be formulated.

Note: The distributed parameter description of a system is very often
formed by Þrst looking at an inÞnitely small part of the considered sys-
tem. This small part can be described as a lumped system with in and
out ßows. Subsequently, the description is expanded by integrating over
the entire volume of the system, resulting in the distributed parameter
description. Distributed systems can be solved by numerical solvers by
dividing them into a large number of lumps (so-called �mesh cells�) and
then solving the obtained large system of equations2. Clearly, this makes
the step of Þrst making a distributed parameter description redundant.
The same result could have been obtained by directly subdividing the
original system into small lumps. Doing the latter could mean that the
results are less accurate, more equations are needed and the no mathe-
matical relations of a distributed proÞle (such as (T (x), T (r), c(x), etc.)
can be easily formed (which is, for that matter, only possible for very
simple distributed systems). But it would give the additional advantages

1One can also write the extensive quantities in distributed form, but people have gotten
used to see the formulation in intensive quantities.

2This three-point Þnite difference approximation is not the only method available for
solving distributed systems. Also other approximations, that cannot straightforwardly be
interpreted as a series of lumped systems, are available. These other methods would result
in more complex structures.

190 Conclusions and Future Work

that instationary situations could be handled easily, the initial conditions
do not necessarily have to be smooth, no mathematical description of
the geometry is needed, no state variable transformations need to be
performed and the extensive quantities remain their physical meaning
and do not have to be removed from the mathematical description.

� This work was limited to mass and energy. The discussed framework is,
though, of a more general nature, such that the now existing modelling
methodology and, consequently, also the computer program can readily
be extended to accommodate any other fundamental extensive quantity,
such as momentum and electrical charge.

� Incorporation of more basic thermodynamic concepts, in particular in
the area of state variable transformation

� A modelling course for students and chemical engineers should be de-
veloped in which all the aspects of dynamic modelling are covered and
which educates people to quickly construct consistent process models for
all kinds of applications.

12.2.2 Implementation

The current version of the program is a third version after the Þrst version of
T.Y. Lee (Lee 1990) and the second of A.Z. Mehrabani (Mehrabani Zeinabad
1995). It is a complete redesign and rewrite of the earlier versions with the
objective to open it up for further development. This is considerably eased
by the facilities offered by the Component Pascal language, as well as the
current software architecture of the program, which is strongly modularised
and component-oriented. The Þrst two projects were primarily focussed on
an implementation of the physical and species topology, from which (scalar)
balance equations could be generated. The theoretical background of later
steps (i.e. the algebraic equations and assumptions) as well as a formalisation
of all steps of the modelling methodology was developed during this research
project.

There are three main directions in which the research and implementation
of Modeller should continue: interfacing with other software, improving the
user interface and new capabilities.

Concerning the Þrst of these directions, a few of the immediate objectives
are:

� Interfacing to major ßow-sheeting, general purpose simulators and alge-
braic manipulators. Currently only an output Þle is generated that is
suited for running simulations in Matlab. Interfaces to other problem
solving software should be written.

12.2 Suggestions for Further Research 191

� Integration of sophisticated knowledge-based systems for the selection of
the applicable physical laws. These systems should provide assistance in
selecting an appropriate mechanistic detail from a set of alternatives. A
user should be able to choose a proper transfer law, kinetic law or any
other relationship from a wide range of alternatives.

� Integration of species and (compatible) reactions databases, which con-
tain information about physical properties and other speciÞc quantities
of species and reactions. The species and reactions databases are now
completely user-deÞned lists. This makes it possible to generate species
and reactions which may not exist (which may, of course, be a good
thing for educational purposes). A better species editor and a compati-
ble consistent reactions editor have to be written.

The following ideas would contribute to the improvement of the user in-
terface of the program:

� Construct a better variable and equation editor. The variables used by
the equation editor and consequently by the modeller can be deÞned by
the user. Such variables have no dimensions at this stage, so a lot of
�nonsense� equations could be generated. The variable editor and the
equation editor have to be improved in the future. Great effort should be
put in the construction of an equation editor which enforces consistency
of equations.

The last of the three directions addresses some ideas for new capabilities,
which should be introduced to the program:

� Handling of distributed systems. Currently the Modeller is limited to
lumped systems. The extensions for handling both lumped and dis-
tributed systems should be considered. These extensions can, of course,
only be implemented when the appropriate underlaying theory has been
sufficiently developed.

� Multi-dimensional repetitive process structures. When a model designer
builds a model which consist of many identical parts, he should be able
to build one basic construction block (consisting of systems and connec-
tions), which he then could multiply in more than one direction in an
easy and structurally consistent way.

� Implementation of the Full Index Reduction Method. Due to time limi-
tations it was, unfortunately, not possible to implement the needed sym-
bolic manipulations (such as symbolic differentiation and null-space cal-
culation) for the application of the Full Index Reduction Method.

192 Conclusions and Future Work

� Implementation of model reduction, which Þts the model into a user-
deÞned time-scale window.

Bibliography

Abbott, Kirk A. (1996). Very Large Scale Modeling. PhD thesis. Carnegie-
Mellon University. Pittsburgh, Pennsylvania.

Apostel, L. (1960). Towards the formal study of models in the non-formal
sciences from the concept and the role of the model in mathematics an
dnatural and social sciences. D. Reidel Publishing Company.

Aris, R. (1978). Mathematical modeling techniques. Vol. 24 of Research notes
in mathematics. Pitman.

Aris, Rutherford (1969). Elementary Chemical Reactor Analysis. Prentice
Hall. Englewood Cliffs, N.J.

Asbjørnsen, O.A., B. Meyssami and C. Sørlie (1989). Structuring the knowl-
edge for process modeling from Þrst principles. IAKE�89.

Bachmann, R., L. Brüll T. Mrziglod and U. Pallaske (1989). A contribution
to the numerical treatment of differential algebraic equations arising in
chemical engineering. Dechema-Monographs 116, 343�349.

Bachmann, R., L. Brüll T. Mrziglod and U. Pallaske (1990). On methods
for reducing the index of differential algebraic equations. Computers and
Chemical Engineering 14(11), 1271�1273.

Barton, Paul I. (1992). The Modelling and Simulation of Combined Dis-
crete/Continuous Processes. PhD thesis. Imperial College of Science,
Technology and Medicine. London.

Barton, Paul I. (1995). Structural analysis of systems of equa-
tions. Department of Chemical Engineering, MIT, Cambridge.
http://yoric.mit.edu/abacuss2/doc.html.

Barton, Paul I. (2000). The equation oriented strategy for process ßow-
sheeting. Department of Chemical Engineering, MIT, Cambridge.
http://yoric.mit.edu/abacuss2/doc.html.

193

194 Bibliography

Barton, P.I. and C.C. Pantelides (1993). gproms - a combined dis-
crete/continuous modelling environment for chemical processing systems.
Simulation Series 25, 25�34. http://www.psenterprise.com.

Bieszczad, Jerry (2000). A Framework for the Language and Logic of
Computer-Aided Phenomena-Based Process Modeling. PhD thesis. Mas-
sachusetts Institute of Technology. Massachusetts, USA.

Blachman, Nancy and Michael Mossinghoff (1998).Maple V, Quick Reference.
Brooks/Cole. http://www.maplesoft.com.

Brenan, K.E., S.L. Campbell and L.R. Petzold (1996). Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Equations. SIAM.
Philadelphia.

Buckley, P.S., Luyben W.L. Shunta F.S. (1985). Design of distillation column
control systems. Instrument Society of Amerca. Research Triangle Park,
USA.

Bujakiewics, Pawel (1994). Maximum weighted matching for high index differ-
ential algebraic equations. PhD thesis. Technical University Delft. Delft,
The Netherlands.

Carpanzano, Emanuele (1996). A graph theoretic approach to the tearing
problem. Internal Report 1996#158. Department of Electronics and Com-
puter Science, Politecnico di Milano. Italy.

Cellier, F.E. and H. Elmqvist (1993). Automated formula manipulation sup-
perts object-oriented continuous-system modeling. IEEE Control System
Magazine 13(2), 28�38.

Cellier, François E. (1991). Continuous System Modeling. Springer Verlag. New
York.

Chung, Y. and A.W. Westerberg (1990). A proposed numerical algorithm for
solving nonlinear index problems. Ind. Eng. Chem. Res. 29, 1234�1239.

Denn, Morton M. (1986). Process Modeling. Longman ScientiÞcal & Technical.

Dormoy, Jean-Luc and S. Furic (2000). A transformational approach to code
generation for numerical simulation: the simgen system. Submitted to
ASE 2000.

Duff, I.S., A.M. Erismann and J.K. Reid (1986). Direct methods for sparse
matrices. Oxford Science Publications.

Bibliography 195

Egelhoff, C.J., D.M. Blackketter and J.P. Glumbik (1998). Innovative equation
management techniques for impementation in kinematics and dynamics
courses. In: Frontiers in Education Conference. Tempe, Arizona, USA.

Elmqvist, H. and S.E. Mattsson (1997). Modelica - the next generation mod-
eling language: An international design effort. In: 1st World Congress on
System Simulation. Singapore.

Elmqvist, H., M. Otter and F.E. Cellier (1995). Inline integration: A new
mixed symbolic/numeric approach for solving differential� algebraic equa-
tion systems. In: ESM�95, SCS European Simulation MultiConference.
Prague, Czech Republic.

Elmqvist, H.and F.E. Cellier and M. Otter (1993). Object-oriented modeling
of hybrid systems. European Simulation Symposium. Delft, The Nether-
lands. pp. xxxi � xli.

Elmqvist, Hilding (1978). A Structured Model Language for Large Continuous
Systems. PhD thesis. Lund Institute of Technology. Lund, Sweden.

Evans, L.B. (1990). Process modelling: What lies ahead. Chemical Engineering
Progress pp. 42�44.

Fábián, G (1999). A Language and Simulator for Hybrid Systems. PhD thesis.
Eindhoven University of Technology. Eindhoven, The Netherlands.

Fábián, G, D.A. van Beek and J.E. Rooda (2001). Index reduction and discon-
tinuity handling using substitute equations. Mathematical and Computer
Modelling of Dynamical Systems 7(2), 173�187.

Freehery, W. and P.I. Barton (1996). A differentiation-based approach
to dynamic simulation and optimization with high-index differential-
algebraic equations. In: SIAM Computational Differentiation (G. Corliss
M. Berz, C. Bischof and A. Griewank, Eds.). pp. 239�253.
http://yoric.mit.edu/abacuss2/abacuss2.html.

Gear, C.W. (1988). Differential-algebraic equation index transformations.
SIAM J. Sci. Stat. Comput. 9(7), 39�47.

Gear, C.W. (1990). Differential algebraic equations, indices and integral alge-
braic equations. SIAM J. Numer. Anal. 27(6), 1527�1534.

Gear, C.W. and L.R. Petzold (1984). Ode methods for the solution of differ-
ential/algebraic systems. SIAM J. Numer. Anal. 21(4), 716�728.

196 Bibliography

Grijseels, Steven (1999). On the subject of single phase simple systems: A
thermodynamic modelling concept. Internal Report NR-2159. Technische
Universiteit Eindhoven. The Netherlands.

Hangos, K.M. and I.T. Cameron (2001). Formal Representation of Assump-
tions in Process Modelling. in print.

Himmelblau, D.M. and K.B. Bischoff (1968). Process Analysis and Simulation.
Deterministic Systems. John Wiley & Sons.

Hindmarsh, A.C. (1983). Odepack, a systematized collection of ode solvers. In:
ScientiÞc Computing (R.S. Stepelman, Ed.). North-Holland, Amsterdam.
pp. 55�64.

Jensen, Anne Krogh (1998). Generation of Problem SpeciÞc Simulation Mod-
els with an Integrated Computer Aided System. PhD thesis. Technical
University of Denmark, Department of Chemical Engineering. Kastrup,
Denmark.

Kailath, Thomas (1980). Linear Systems. Information and System Sciences.
Prentice-Hall, Inc.. Englewood Cliffs.

Kron, G. (1962). Diakoptics - the piecewise solution of large-scale systems.
MacDonald & Co., London, UK.

Lee, Tae Yeoung (1990). The development of an object-oriented environment
for the modeling of physical, chemical and biological systems. PhD thesis.
Texas A&M University. USA.

Lohmann, Bernd (1998). Anzätze zur Unterstützung des Arbeitsablaufes bei
der rechnerbasierten Modellierung verfahrenstechnisher Prozesse. PhD
thesis. RWTH Aachen, Germany.

MacKenzie, S. A., P. J. Gawthrop R. W. Jones and J. W. Ponton (1991). Sys-
tematic modelling of chemical processes. IFAC symposium on Advanced
Control of Chemical Processes, ADCHEM�91.

Majer, C., W. Marquardt and E.D. Gilles (1995). Reinitialization of daes after
discontinuities. Computers and Chemical Engineering 19, S507�S512.

Marquardt, W. (1991). Dynamic process simulation - recent progress and fu-
ture challenges. CPC IV.

Marquardt, W. (1992). An object-oriented representation of structured process
models. European Symposium on Computer Aided Process Engineering-1
pp. S329�S336.

Bibliography 197

Marquardt, W. (1994a). Towards a process modelling methodology. Technical
report. Aachen University of Technology. Aachen, Germany.

Marquardt, W. (1995). Numerical methods for the simulation of differential-
algebraic process models. In: Methods of model based control (R. Berber,
Ed.). Vol. 293 of NATO-ASI Ser. E, Applied Sciences. pp. 42�79. Kluwer
Academic Publ. Dordrecht, The Netherlands.

Marquardt, Wolfgang (1994b). An advanced framework for computer-aided
process modeling. In: ASPENWORLD�94. Vol. 1 of T5. Boston MA,
USA.

MATLAB user�s guide (1992). MATH WORKS Inc.
http://www.mathworks.com.

Mattsson, S.E. and G. Söderlind (1993). Index reduction in differential-
algebraic equations using dummy derivatives. SIAM J. Sci. Stat. Comput.
14(3), 677�692.

Mattsson, S.E. and M. Andersson (1992). Omola - an object oriented modelling
language. In: Recent Advances in Computer-Aided Control Systems Engi-
neering (M. Jamshidi and C.J. Herget, Eds.). Vol. Studies in Automation
and Control. Amsterdam: Elsevier Science Publishers. pp. 291�310.

Mehrabani Zeinabad, Arjomand (1995). Computer aided modelling of
physical-chemical-biological systems. PhD thesis. University of New
South Wales. Sydney, Australia.

Mod (2000). ModelicaTM - A UniÞed Object-Oriented Language for Physical
Systems Modeling - Tutorial. http://www.modelica.org.

Moe, Hûavard I., S. Hauan, K.M. Lien and T. Hertzberg (1995). Dynamic model
of a system with phase- and reaction equilibrium. Comput.Chem.Eng.
19, S513�S518.

Moe, Hûavard I. (1995). Dynamic process simulation: studies on modeling and
index reduction. PhD thesis. Norwegian University of Science and Tech-
nology. Trondheim, Norway.

Ogunnaike, Babatunde A., W. Harmon Ray (1994). Process Dynamics, Mod-
eling, and Control. Oxford University Press.

Pantalides, C.C. (1998). Speedup - recent advances in process simulation.
Comput. Chem. Eng. 12(7), 745�755. www.aspentech.com.

198 Bibliography

Pantelides, C.C. (1998). Dynamic behaviour of process systems. Technical re-
port. Centre for Process Systems Engineering, Imperial College. London,
UK.

Petzold, L.R. (1983). A description of dassl: A differential/algebraic system
solver. In: ScientiÞc Computing (R.S. Stepleman et al, Ed.). North-
Holland, Amsterdam. pp. 65�68.

Petzold, L.R. and P.Lötstedt (1986). Numerical solution of nonlinear differen-
tial equations with algebraic constraints ii: Practical implications. SIAM
J. Sce. Statist. Comput. 7, 720�733.

PÞster, C. and C. Szyperski (1994). Framework Tutorial and Reference. 12 ed..
Oberon microsystems, Inc. Solothurnerstr. 45 CH-2043 Basel, Switzer-
land. Introduction to Oberon/F (object-oriented programming language).

Piela, P. (1989). ASCEND - An Object Oriented Environment for the Devel-
opment of Quantitative Models. PhD thesis. Carnegie Mellon University.
Pittsburg, USA. http://www-2.cs.cmu.edu/ ascend/.

Piela, P., R.McKelvey and A. Westerberg (1993). An introduction to the as-
cend modeling system: Its language and interactive environment.Manag.
Inf. Syst. 3, 91�121. http://www-2.cs.cmu.edu/ ascend/.

Piela, P.C., T.G. Epperly K.M. Westerberg and A.W. Westerberg (1991). An
object-oriented computer environment for modeling and analysis: The
modeling language. Computers and Chemical Engineering 15, 53�72.

Preisig, H.A. (1994a). Components of a computer-based process engineering
environment. Technical report. University of New South Wales. Kensing-
ton, USA, NSW 2033.

Preisig, H.A., Ed.) (1991a). On Computer-Aided Modelling For Design. AIChe
Annual Meeting. Los Angeles, USA. 138e.

Preisig, H.A., Ed.) (1991b). View On The Architecture Of A Computer-Aided
Process Engineering Environment. AIChE Annual Meeting. Los Angeles,
USA. 137b.

Preisig, H.A., Guo, D.-Z. and Mehrabani, A.Z., Eds.) (1991). Computer-Aided
Modelling: A New High-Level Interface to Process Engineering Software.
CHEMECA-91. New Castle, Australia. 954-960.

Preisig, H.A., Lee, T.Y. and Little, F., Eds.) (1990). A Prototype Computer-
Aided Modelling Tool for Life-Support System Models. 20th Intersociety
Conference on Environmental Systems. SAE Technical Paper Series No
901269. Williamsburgh, USA. 10 pages.

Bibliography 199

Preisig, H.A., Lee, T.Y., Little, F. and Wright, B., Eds.) (1989). On The Rep-
resentation of Life-Support System Models. 19th Intersociety Conference
on Environmental Systems. SAE Technical Paper Series No 891479. San
Diego, California, USA. 13 pages.

Preisig, Heinz A. (1991c). On computer-aided modelling for design. In: Annual
Meeting AIChE. Los Angeles, USA.

Preisig, Heinz A. (1994b). Computer aided modeling: species topology. In:
Preprints IFAC Symp. ADCHEM�94. Kyoto, Japan. pp. 143�148.

Preisig, Heinz A. (1996). Dynamic Systems and Control Technology. Eind-
hoven University of Technology. 5600 MB Eindhoven, The Netherlands.
college material.

Rademaker, O.J., Rijnsdorp J.E. Maarleveld A. (1975). Dynamics and control
of continuous distillation columns. Elevier. Amsterdam, The Netherlands.

Sargent, R.W.H. (1983). Advances in modelling and analysis of chemical pro-
cess systems. Computers Chem. Engng. 7(4), 219�237.

Sargent, R.W.H. (1989). Process design - whats next?. In: Proceedings of the
Third International Conference on Foundations of the Computer-Aided
Proces Design. Elsevier. pp. 528�553.

Shinskey, F.G. (1984). Distillation Control. McGraw-Hill. New York, USA.

Skogestad, Sigurd (1997). Dynamics and control of distillation columns; a
tutorial introduction. Trans. IChemE.

Sontag, Eduardo D. (1990). Mathematical Control Theory: Deterministic
Finite Dimensional Systems. Vol. 6 of Texts in Applied Mathematics.
Springer-Verlag. New York.

Stephanopoulos, George (1984). Chemical Process Control. An Introduction to
Theory and Practice. Prentice-Hall, Inc.. Englewood Cliffs, New Jersey
07632.

Tarjan, R.E. (1972). Depth-Þrst search and lnear graph algorithms. SIAM
Journal of Computing 1(2), 146�160.

Telnes, K. (1992). Computer Aided Modeling of Dynamic Processes Based on
Elementary Physics. PhD thesis. The Norwegian Institute of Technology.
Trondheim.

200 Bibliography

Thevenon, Luc and Jean-Marie Flaus (2000). Modular representation of com-
plex hybrid systems: Application to the simulation of batch processes.
Accepted for publication in the Journal of Simulation Practice.

Tisza, L. (1961). The thermodynamics of phase equilibrium. Annals of Physics
13(1), 92.

Vázquez-Román, R., J.M.P. King and R. Banares-Alcántara (1996). KBMoSS:
A process engineering modelling support system. Computers Chem. En-
gng. 20, S309�S314.

Weiss, M., H.A. Preisig (2000). Structural analysis in the dynamical modelling
of chemical engineering systems. Mathematical and Computer Modelling
of Dynamical Systems 6(4), 325�264.

Westerweele, M.R., H.A. Preisig (2001). Minimal representation of Þrst princi-
ple process models. ESCAPE. Elseview Science Ltd.. Scanticon Comwell
Kolding. pp. S47�S52.

Westerweele, M.R., H.A. Preisig M. Weiss (1999). Concept and design of
Modeller, a computer-aided modelling tool. Computers and Chemical En-
gineering pp. S751�S754.

Westerweele, M.R., M. Akhssay and H.A. Preisig (2000). Modelling of sys-
tems with equilibrium reactions. IMACS Symposium on Mathematical
Modelling. Vienna University of Technology, Austria. pp. 697�700.

Wolfram, Stephen (1991). Mathematica, a system for doing mathematics by
computer. Addison-Wesley Publishing Co.. Redwood City, California.
http://www.wolfram.com.

Zeigler, Bernard P. (1984). Multifaceted Modeling and Discrete Event Simula-
tion. Academic Press. London, UK.

Appendix A

Module CamTools

DEFINITION CamTools;

IMPORT Stores, Dialog;

CONST
clean = 0;

invisible = 1;

notUndoalble = 2;

VAR
stack: RECORD

undoList, redoList: Dialog.List;

maxShow: INTEGER

END;

PROCEDURE BeginModiÞcation (type: INTEGER; st: Stores.Store);

PROCEDUREBeginScript (st: Stores.Store; IN opName: Stores.OpName; VAR script: Stores.Operation);

PROCEDURE ClearUndoRedoListsOf (st: Stores.Store);

PROCEDURE Do (st: Stores.Store; IN opName: Stores.OpName; op: Stores.Operation);

PROCEDURE EndModiÞcation (type: INTEGER; st: Stores.Store);

PROCEDURE EndScript (st: Stores.Store; script: Stores.Operation);

PROCEDURE GetUndoRedoListsOf (st: Stores.Store);

PROCEDUREMaxShowNotiÞer (op, from, to: INTEGER);

PROCEDURE Redo;

PROCEDURE RedoGuard (VAR par: Dialog.Par);

PROCEDURE RedoListNotiÞer (op, from, to: INTEGER);

PROCEDURE Undo;

PROCEDURE UndoGuard (VAR par: Dialog.Par);

PROCEDURE UndoListNotiÞer (op, from, to: INTEGER);

201

202 Module CamTools

END CamTools.

The module CamTools forms the foundation for undoable and redoable
operations. This module uses the implementation of the original BlackBox
undo/redo mechanism in such a way that more than one operation can be
undone or redone within one call. The next few alineas contain some excerpts
from the BlackBox documentation and explain how the undo/redo mechanism
works.

Operations are managed per document. Every document contains two
operation stacks; one is the undo stack, the other is the redo stack. Executing
an operation for the Þrst time pushes the object on the undo stack and clears
the redo stack. When the user performs an undo, the operation on top of
the undo stack is undone, removed from the undo stack, and pushed onto the
redo stack. When the user performs a redo, the operation on top of the redo
stack is redone, removed from the redo stack, and pushed onto the undo stack.
A document�s undo and redo stacks are cleared when the document is saved
(check point).

Figure A.1: Sequence of operations and resulting modiÞcations of undo and
redo stacks.

Some operations, such as a moving drag & drop (in contrast to the normal
copying drag & drop), modify two documents simultaneously. In these rare
cases, two operations are created: one for the source document (e.g., a delete
operation) and one for the destination document (e.g., an insert operation).

In Figure A.1, a sequence of operations is shown, from 1) to 8). For
the last Þve situations, the resulting undo and redo stacks are shown. For
example, after operation 5), the undo stack contains the operations Inserting,
Set Properties, and Inserting (from top to bottom of stack), while the redo
stack contains Deleting.

203

The undo/redo mechanism is only concerned with the persistent state of a
document. This is the state which can be saved in a Þle. ModiÞcations of tem-
porary state, such as a view�s scroll position, are not recorded as operations,
and thus cannot be undone.

The BlackBox Component Framework is unique in that its undo/redo
mechanism is component-oriented: it allows to compose undoable operations
into compound operations, which are undoable as a whole. Without this ca-
pability, nested operations would be recorded as a ßat sequence of atomic
operations.

Consider what this would mean for the end user. It would mean that
the user could execute a menu command, which causes the execution of a
hierarchy of operations. So far so good. But when the user wanted to undo
this command, he or she would have to execute Edit->Undo individually for
every single operation of the command, instead of only once.

For this reason, BlackBox provides support for arbitrarily nested opera-
tions: the module CamTools exports the procedures BeginScript and End-
Script. In this context, �script� means a sequence or hierarchy of atomic
operations which is undoable as a whole.

Abstract operations are very light-weight. They only provide one single
parameterless procedure, called Do. This procedure must be implemented in
a reversible way, so that if it is executed an even number of times, it has no
effect. If it is executed an odd number of times, it has the same effect as when
it is executed once.

A simple and correct way to implement this Do procedure of an operation is
as follows: Within the procedure Þrst save the old state, then set the new state
and Þnally set the undo state. The following example clariÞes the working of
the Do procedure.

Example 1.1: The Undo/Redo Mechanism

Consider an object (obj) which has one parameter (obj.x) and an
operation (op) which has a parameter (op.x) and a reference to
the object (op.obj). The procedure Do of the operation op whould
then look as follows:

204 Module CamTools

PROCEDURE (op: Operation) Do;
VAR x (*temporary state *)
BEGIN

(* Save old state *)
x := op.obj.x;
(*Set new state *)
op.obj.x := op.x
(*Set undo state *)
op.x := x

END Do;

Say the parameter (x) of the object (obj) is set to obj.x = old state
and we want to change the parameter to new state. First a new
operation must be deÞned and the operations object must be set to
the object which we want to change (op.obj := obj). Next the
desired new state of the object is passed to the new operation (op.x
:= new state). Finally the operations procedure Do is called. The
following happens:

1. The old state is saved in a temporary parameter: x := old state

2. The new state is set: op.obj.x := new state

3. The undo state is set: op.x := old state

So, after the operation is performed, the operation (op) contains
the object (obj) which now has its parameter set to the new state
and the parameter of the operation (op.x) is set to the old state.
When the operation is undone the Do procedure is called again:

1. The old state is saved in a temporary parameter: x := new state

2. The new state is set: op.obj.x := old state

3. The undo state is set: op.x := new state

The operation is now executed two times and as you can see this has
the same effect as not executing the operation at all. The procedure
is thus implemented in a reversible way, so that if it is executed
an even number of times, it has no effect. If it is executed an odd
number of times, it has the same effect as when it is executed once.

¤

Appendix B

Example of Modeller Output
Files

This appendix lists the documentation Þle and code Þle of the extractor ex-
ample (discussed in paragraph 11.2) as they are generated by the current
implementation of the Modeller.

The documentation Þle documents all the assumptions made by the model
designer and lists all the deÞned equations and variables. The code Þle is a
Matlab m-Þle, which can be executed by typing the name of the Þle in the
Matlab command window.

Figure B.1: Screenshot of output generation tab.

205

M
O

D
E

LL
E

R
 D

O
C

U
M

E
N

T
A

TI
O

N
 F

IL
E:

M
O

D
E

L
N

A
M

E
: E

xt
ra

ct
io

n
Pr

oc
es

s

H
IE

R
A

R
C

H
IC

A
L

 S
T

R
U

C
TU

R
E

:

(T
op

 L
ev

el
) E

xt
ra

ct
io

n
Pr

oc
es

s

-(
1)

 C
oo

la
nt

 S
ou

rc
e

-(

2)
 C

oo
la

nt
 S

in
k

-(

3)
 F

ee
d

A
, D

-(

4)
 F

ee
d

B
, D

-(

5)
 F

ee
d

E

-(
6)

 R
ea

ct
io

n
Ph

as
e

Si
nk

-(

7)
 E

xt
ra

ct
io

n
Ph

as
e

Si
nk

-(

8)
 E

xt
ra

ct
or

- (

8.
1)

 C
oo

le
r

-(
8.

2)
 R

ea
ct

io
n

Ph
as

e

-(

8.
3)

 E
xt

ra
ct

io
n

Ph
as

e

C
O

N
N

E
C

T
IO

N
S:

IN
D

E
X

 T

Y
PE

 S

O
U

R
C

E
 --

||-
- T

A
R

G
E

T

--

 -

--
-

--

--

-
m

01

 M

as
s

 C
oo

la
nt

 S
ou

rc
e (

1)
 --

||-
- C

oo
le

r
(8

.1
)

m
02

 M
as

s
 C

oo
le

r
(8

.1
) -

-||
--

 C
oo

la
nt

 S
in

k
(2

)
m

03

 M

as
s

 F
ee

d
A

, D
 (3

) -
-||

--
 R

ea
ct

io
n

Ph
as

e
(8

.2
)

m
04

 M
as

s
 F

ee
d

B,
 D

 (4
) -

-||
--

 R
ea

ct
io

n
Ph

as
e

(8
.2

)
m

05

 M

as
s

 F
ee

d
E

(5
) -

-||
--

 E
xt

ra
ct

io
n

Ph
as

e
(8

.3
)

m
06

 M
as

s
 R

ea
ct

io
n

Ph
as

e
(8

.2
) -

-||
--

 R
ea

ct
io

n
Ph

as
e

Si
nk

 (6
)

m
07

 M
as

s
 E

xt
ra

ct
io

n
Ph

as
e

(8
.3

) -
-||

--
 E

xt
ra

ct
io

n
Ph

as
e

Si
nk

 (7
)

m
08

 M
as

s
 R

ea
ct

io
n

Ph
as

e
(8

.2
) -

-||
--

 E
xt

ra
ct

io
n

Ph
as

e
(8

.3
)

h0
1

 H
ea

t
 C

oo
le

r
(8

.1
) -

-||
--

 R
ea

ct
io

n
Ph

as
e

(8
.2

)

PL
A

N
T

 S
PE

C
IE

S:

1)
 S

pe
ci

es
 Q

 -
Q

2)

 S
pe

ci
es

 A
 -

A

3)
 S

pe
ci

es
 D

 -
D

4)

 S
pe

ci
es

 B
 -

B

5)
 S

pe
ci

es
 C

 -
C

6)

 S
pe

ci
es

 E
 -

E

O
C

C
U

R
IN

G
 R

E
A

C
TI

O
N

S:

1)
 2

A
 +

 3
B

 =
=>

 8
C

M
A

PP
IN

G
 O

F
SY

ST
EM

S:

1)

(8
.1

) C
oo

le
r

2)

(8
.2

) R
ea

ct
io

n
Ph

as
e

3)

(8
.3

) E
xt

ra
ct

io
n

Ph
as

e
4)

(1

) C
oo

la
nt

 S
ou

rc
e

5)

(2
) C

oo
la

nt
 S

in
k

6)

(3
) F

ee
d

A
, D

7)

(4

) F
ee

d
B

, D

8)

(5
) F

ee
d

E
9)

(6

) R
ea

ct
io

n
Ph

as
e

Si
nk

10

)
 (7

) E
xt

ra
ct

io
n

Ph
as

e
Si

nk

U
SE

D
 E

Q
U

A
T

IO
N

S:

1)
 h

s =
 sp

ec
.h

0
+

sp
ec

.c
p*

(T
 -

gl
ob

.T
re

f)

2)
 c

 =
 n

/V

3)
 T

 =
 (H

 -
n'

*s
pe

c.
h0

)/(
n'

*s
pe

c.
cp

) +
 g

lo
b.

Tr
ef

4)

 r
=

kf
*s

ys
.c

(1
)^

2*
sy

s.
c(

2)
^3

 -
kb

*s
ys

.c
(3

)^
8

5)
 n

ha
t =

 o
r.c

*V
ha

t
6)

 H
ha

t =
 o

r.h
s'*

nh
at

7)

 H
ha

t =
 ((

di
ag

(1
+s

ig
n(

nh
at

))
*o

r.h
s +

 d
ia

g(
1-

si
gn

(n
ha

t))
*t

ar
.h

s)
/2

)'*
nh

at

8)
 n

ha
t =

 k
*(

or
.c

 -
ta

r.c
)

9)
 q

 =
 U

*A
*(

or
.T

 -
ta

r.T
)

U
SE

D
 V

A
R

IA
BL

E
S:

1)
 h

s -
 S

pe
ci

fic
 E

nt
ha

lp
y

2)
 h

0
- S

pe
ci

fic
 R

ef
 E

nt
ha

lp
y

3)
 c

p
- S

pe
ci

fic
 H

ea
t

4)
 T

 -
Te

m
pe

ra
tu

re

5)
 T

re
f -

 R
ef

er
en

ce
 T

em
pe

ra
tu

re

6)
 c

 -
C

on
ce

nt
ra

tio
n

7)
 n

 -
M

ol
ar

 M
as

s
8)

 V
 -

V
ol

um
e

9)
 H

 -
En

th
al

py

10
) r

 -
R

ea
ct

io
n

R
at

e
11

) k
b

- C
on

st
an

t
12

) k
f -

 C
on

st
an

t
13

) n
ha

t -
 M

ol
ar

 M
as

s F
lo

w

14
) V

ha
t -

 V
ol

um
et

ric
 F

lo
w

15

) H
ha

t -
 E

nt
ha

lp
y

Fl
ow

16

) k
 -

C
on

st
an

t
17

) q
 -

H
ea

t F
lo

w

18
) U

 -
O

ve
ra

ll
H

ea
t T

ra
ns

fe
r C

oe
f

19
) A

 -
A

re
a

G
lo

ba
l V

ar
ia

bl
es

:

Tr
ef

 =
 0

.0

D
E

T
A

IL
S:

Sy
st

em
 1

(=

 8
.1

 C
oo

le
r)

Ty

pe
: L

um
p

Sp
ec

ie
s I

n
Sy

st
em

: {
1}

In

iti
al

 C
on

di
tio

ns
:

n

=
[0

.1
]

H

 =
 H

Fr
om

T(
n,

 sp
ec

.h
0,

 sp
ec

.c
p,

 3
00

, g
lo

b.
Tr

ef
)

C
on

st
an

ts
:

V

 =
 0

.1

Eq
ua

tio
ns

:

c
=

n/
V

T
=

(H
 -

n'
*s

pe
c.

h0
)/(

n'
*s

pe
c.

cp
) +

 g
lo

b.
Tr

ef

hs

 =
 sp

ec
.h

0
+

sp
ec

.c
p*

(T
 -

gl
ob

.T
re

f)

Sy
st

em
 2

(=

 8
.2

 R
ea

ct
io

n
Ph

as
e)

Ty

pe
: L

um
p

Sp
ec

ie
s I

n
Sy

st
em

: {
2,

 3
, 4

, 5
}

In
iti

al
 C

on
di

tio
ns

:

n
=

[0
.5

; 2
0.

0;
 1

.0
; 0

.0
]

H

 =
 H

Fr
om

T(
n,

 sp
ec

.h
0,

 sp
ec

.c
p,

 3
00

, g
lo

b.
Tr

ef
)

C
on

st
an

ts
:

V

 =
 1

.0

Eq
ua

tio
ns

:

c

=
n/

V

T

=
(H

 -
n'

*s
pe

c.
h0

)/(
n'

*s
pe

c.
cp

) +
 g

lo
b.

Tr
ef

hs
 =

 sp
ec

.h
0

+
sp

ec
.c

p*
(T

 -
gl

ob
.T

re
f)

R
ea

ct
io

ns
 In

 S
ys

te
m

:

1)
 2

A
 +

 3
B

 =
=>

 8
C

 r
 =

 k
f*

sy
s.c

(1
)^

2*
sy

s.c
(2

)^
3

- k
b*

sy
s.c

(3
)^

8

 (

1)
 =

 A

 (
2)

 =
 B

 (

3)
 =

 C

 k
b

=
0.

08

 k
f =

 0
.1

1

Sy
st

em
 3

(=

 8
.3

 E
xt

ra
ct

io
n

Ph
as

e)

Ty
pe

: L
um

p
Sp

ec
ie

s I
n

Sy
st

em
: {

5,
 6

}
In

iti
al

 C
on

di
tio

ns
:

n

=
[0

.0
; 2

1.
0]

H
 =

 H
Fr

om
T(

n,
 sp

ec
.h

0,
 sp

ec
.c

p,
 3

00
, g

lo
b.

Tr
ef

)

C
on

st
an

ts
:

V

 =
 1

.0

Eq
ua

tio
ns

:

c
=

n/
V

T
=

(H
 -

n'
*s

pe
c.

h0
)/(

n'
*s

pe
c.

cp
) +

 g
lo

b.
Tr

ef

hs

 =
 sp

ec
.h

0
+

sp
ec

.c
p*

(T
 -

gl
ob

.T
re

f)

Sy
st

em
 4

(=

 1
 C

oo
la

nt
 S

ou
rc

e)

Ty
pe

: S
ou

rc
e

Sp
ec

ie
s I

n
Sy

st
em

: {
1}

C

on
st

an
ts

:

c
=

[1
.0

]

T
=

30
0.

0

Eq
ua

tio
ns

:

hs
 =

 sp
ec

.h
0

+
sp

ec
.c

p*
(T

 -
gl

ob
.T

re
f)

Sy
st

em
 5

(=

 2
 C

oo
la

nt
 S

in
k)

Ty

pe
: S

in
k

Sp
ec

ie
s I

n
Sy

st
em

: {
1}

Sy
st

em
 6

(=

 3
 F

ee
d

A
, D

)
Ty

pe
: S

ou
rc

e
Sp

ec
ie

s I
n

Sy
st

em
: {

2,
 3

}
C

on
st

an
ts

:

c
=

[0
.5

; 1
0.

0]

T

=
30

0.
0

Eq
ua

tio
ns

:

hs
 =

 sp
ec

.h
0

+
sp

ec
.c

p*
(T

 -
gl

ob
.T

re
f)

Sy
st

em
 7

(=

 4
 F

ee
d

B
, D

)
Ty

pe
: S

ou
rc

e
Sp

ec
ie

s I
n

Sy
st

em
: {

3,
 4

}
C

on
st

an
ts

:

c
=

[1
0.

0;
 1

.0
]

T

=
30

0.
0

Eq
ua

tio
ns

:

hs
 =

 sp
ec

.h
0

+
sp

ec
.c

p*
(T

 -
gl

ob
.T

re
f)

Sy
st

em
 8

(=

 5
 F

ee
d

E)

Ty
pe

: S
ou

rc
e

Sp
ec

ie
s I

n
Sy

st
em

: {
6}

C

on
st

an
ts

:

c
=

[2
1.

0]

T

=
30

0.
0

Eq
ua

tio
ns

:

hs
 =

 sp
ec

.h
0

+
sp

ec
.c

p*
(T

 -
gl

ob
.T

re
f)

Sy
st

em
 9

(=

 6
 R

ea
ct

io
n

Ph
as

e
Si

nk
)

Ty
pe

: S
in

k
Sp

ec
ie

s I
n

Sy
st

em
: {

2,
 3

, 4
, 5

}

Sy
st

em
 1

0
 (

 =
 7

 E
xt

ra
ct

io
n

Ph
as

e
Si

nk
)

Ty
pe

: S
in

k
Sp

ec
ie

s I
n

Sy
st

em
: {

5,
 6

}

M
as

s C
on

ne
ct

io
n

m
01

O
rig

in
: S

ys
te

m
 4

(=

 1
 C

oo
la

nt
 S

ou
rc

e)

Ta
rg

et
: S

ys
te

m
 1

(=

 8
.1

 C
oo

le
r)

Sp

ec
ie

s T
hr

ou
gh

 C
on

ne
ct

io
n:

 {
1}

C

on
ne

ct
io

n
is

 U
ni

-d
ire

ct
io

na
l

V

ha
t =

 1
.0

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
02

O
rig

in
: S

ys
te

m
 1

(=

 8
.1

 C
oo

le
r)

Ta

rg
et

: S
ys

te
m

 5

(=
 2

 C
oo

la
nt

 S
in

k)

Sp
ec

ie
s T

hr
ou

gh
 C

on
ne

ct
io

n:
 {

1}

C
on

ne
ct

io
n

is
 U

ni
-d

ire
ct

io
na

l

V
ha

t =
 1

.0

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
03

O
rig

in
: S

ys
te

m
 6

(=

 3
 F

ee
d

A
, D

)
Ta

rg
et

: S
ys

te
m

 2

(=
 8

.2
 R

ea
ct

io
n

Ph
as

e)

Sp
ec

ie
s T

hr
ou

gh
 C

on
ne

ct
io

n:
 {

2,
 3

}
C

on
ne

ct
io

n
is

 U
ni

-d
ire

ct
io

na
l

V

ha
t =

 0
.0

1

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
04

O
rig

in
: S

ys
te

m
 7

(=

 4
 F

ee
d

B
, D

)
Ta

rg
et

: S
ys

te
m

 2

(=
 8

.2
 R

ea
ct

io
n

Ph
as

e)

Sp
ec

ie
s T

hr
ou

gh
 C

on
ne

ct
io

n:
 {

3,
 4

}
C

on
ne

ct
io

n
is

 U
ni

-d
ire

ct
io

na
l

V

ha
t =

 0
.0

1

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
05

O
rig

in
: S

ys
te

m
 8

(=

 5
 F

ee
d

E)

Ta
rg

et
: S

ys
te

m
 3

(=

 8
.3

 E
xt

ra
ct

io
n

Ph
as

e)

Sp
ec

ie
s T

hr
ou

gh
 C

on
ne

ct
io

n:
 {

6}

C
on

ne
ct

io
n

is
 U

ni
-d

ire
ct

io
na

l

V
ha

t =
 0

.0
1

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
06

O
rig

in
: S

ys
te

m
 2

(=

 8
.2

 R
ea

ct
io

n
Ph

as
e)

Ta

rg
et

: S
ys

te
m

 9

(=
 6

 R
ea

ct
io

n
Ph

as
e

Si
nk

)
Sp

ec
ie

s T
hr

ou
gh

 C
on

ne
ct

io
n:

 {
2,

 3
, 4

, 5
}

C
on

ne
ct

io
n

is
 U

ni
-d

ire
ct

io
na

l

V
ha

t =
 0

.0
1

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
07

O
rig

in
: S

ys
te

m
 3

(=

 8
.3

 E
xt

ra
ct

io
n

Ph
as

e)

Ta
rg

et
: S

ys
te

m
 1

0
 (

 =
 7

 E
xt

ra
ct

io
n

Ph
as

e
Si

nk
)

Sp
ec

ie
s T

hr
ou

gh
 C

on
ne

ct
io

n:
 {

5,
 6

}
C

on
ne

ct
io

n
is

 U
ni

-d
ire

ct
io

na
l

V

ha
t =

 0
.0

1

Eq
ua

tio
ns

:

nh
at

 =
 o

r.c
*V

ha
t

H

ha
t =

 o
r.h

s'*
nh

at

M
as

s C
on

ne
ct

io
n

m
08

O
rig

in
: S

ys
te

m
 2

(=

 8
.2

 R
ea

ct
io

n
Ph

as
e)

Ta

rg
et

: S
ys

te
m

 3

(=
 8

.3
 E

xt
ra

ct
io

n
Ph

as
e)

Sp

ec
ie

s T
hr

ou
gh

 C
on

ne
ct

io
n:

 {
5}

C

on
ne

ct
io

n
is

 B
i-d

ire
ct

io
na

l

k
=

0.
05

Eq
ua

tio
ns

:

nh
at

 =
 k

*(
or

.c
 -

ta
r.c

)

H
ha

t =
 ((

di
ag

(1
+s

ig
n(

nh
at

))
*o

r.h
s +

 d
ia

g(
1-

si
gn

(n
ha

t))
*t

ar
.h

s)
/2

)'*
nh

at

H
ea

t C
on

ne
ct

io
n

h0
1

O
rig

in
: S

ys
te

m
 1

(=

 8
.1

 C
oo

le
r)

Ta

rg
et

: S
ys

te
m

 2

(=
 8

.2
 R

ea
ct

io
n

Ph
as

e)

U

 =
 1

.0
E+

3

A
 =

 1
.0

Eq
ua

tio
ns

:

q
=

U
*A

*(
or

.T
 -

ta
r.T

)

SP
EC

IE
S

D
A

T
A

:

1)
 S

pe
ci

es
 Q

 -
Q

cp
 =

 1
.0

E+
3

h0

 =
 5

.0
E+

5

2)
 S

pe
ci

es
 A

 -
A

cp

 =
 1

.0
E+

3

h0
 =

 5
.0

E+
5

3)
 S

pe
ci

es
 D

 -
D

cp
 =

 1
.0

E+
3

h0

 =
 5

.0
E+

5

4)
 S

pe
ci

es
 B

 -
B

cp
 =

 8
00

.0

h0

 =
 6

.0
E+

5

5)
 S

pe
ci

es
 C

 -
C

h0
 =

 -5
.0

E+
6

cp

 =
 1

20
0.

0

6)
 S

pe
ci

es
 E

 -
E

cp

 =
 1

.0
E+

3

h0
 =

 5
.0

E+
5

%
 M

O
D

EL
LE

R
 O

ut
pu

t F
ile

.

fu
nc

tio
n

m
od

_o
ut

 =
 m

od
co

de

gl
ob

al
 W

TB
A

R
 m

od
_o

ut
 m

od
_i

nt
 p

ar

m
od

_o
ut

 =
 []

;
m

od
_i

nt
 =

 []
;

pa
r =

 []
;

m
as

sC
on

s(
1,

:)
=

[4
, 1

];

 %
 m

01

m
as

sC
on

s(
2,

:)
=

[1
, 5

];

 %
 m

02

m
as

sC
on

s(
3,

:)
=

[6
, 2

];

 %
 m

03

m
as

sC
on

s(
4,

:)
=

[7
, 2

];

 %
 m

04

m
as

sC
on

s(
5,

:)
=

[8
, 3

];

 %
 m

05

m
as

sC
on

s(
6,

:)
=

[2
, 9

];

 %
 m

06

m
as

sC
on

s(
7,

:)
=

[3
, 1

0]
;

%

 m
07

m

as
sC

on
s(

8,
:)

=
[2

, 3
];

 %

 m
08

 p

ar
.m

08
_P

er
m

O
r =

 S
el

ec
tio

nM
at

rix
(4

, [
4]

);
 p

ar
.m

08
_P

er
m

Ta
r =

 S
el

ec
tio

nM
at

rix
(2

, [
1]

);
he

at
C

on
s(

1,
:)

=
[1

, 2
];

 %

 h
01

nu
m

 =
 3

;

 %
 N

um
be

r o
f L

um
ps

 +
 S

te
ad

y-
St

at
e

Sy
st

em
s

A
_m

as
s =

 S
tre

am
M

at
rix

(n
um

, m
as

sC
on

s)
;

A
_h

ea
t =

 S
tre

am
M

at
rix

(n
um

, h
ea

tC
on

s)
;

nu
m

Sp
ec

 =
 6

;

 %
 N

um
be

r o
f S

pe
ci

es

I =
 sp

ey
e(

nu
m

Sp
ec

);
A

k
=

kr
on

(A
_m

as
s,

I);

G
am

m
aS

 =
 []

;

 %
 In

iti
al

is
e

Sy
st

em
 S

el
ec

tio
n

M
at

rix
 G

am
m

aS

G
am

m
aS

 =
 b

lk
di

ag
(G

am
m

aS
, S

el
ec

tio
nM

at
rix

(n
um

Sp
ec

, [
1]

))
;

%

 S
ys

te
m

 1

G
am

m
aS

 =
 b

lk
di

ag
(G

am
m

aS
, S

el
ec

tio
nM

at
rix

(n
um

Sp
ec

, [
2,

 3
, 4

, 5
])

);

 %
 S

ys
te

m
 2

G

am
m

aS
 =

 b
lk

di
ag

(G
am

m
aS

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

5,
 6

]))
;

%

 S
ys

te
m

 3

S
=

[]
;

 %

 In
iti

al
is

e
St

oi
ch

io
m

et
ric

 M
at

rix
 S

S

=
bl

kd
ia

g(
S,

 sp
ar

se
(0

, 1
*n

um
Sp

ec
))

;
S

=
bl

kd
ia

g(
S,

 sp
ar

se
([

0
-2

 0
 -3

 8
 0

])
);

 %
 S

ys
te

m
 2

S

=
bl

kd
ia

g(
S,

 sp
ar

se
(0

, 1
*n

um
Sp

ec
))

;

G
am

m
aM

 =
 []

;

 %
 In

iti
al

is
e

M
as

s C
on

ne
ct

io
n

Se
le

ct
io

n
M

at
rix

 G
am

m
aM

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

1]
));

 %

 m
01

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

1]
));

 %

 m
02

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

2,
 3

])
);

 %

 m
03

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

3,
 4

])
);

 %

 m
04

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

6]
));

 %

 m
05

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

2,
 3

, 4
, 5

])
);

 %

 m
06

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

5,
 6

])
);

 %

 m
07

G

am
m

aM
 =

 b
lk

di
ag

(G
am

m
aM

, S
el

ec
tio

nM
at

rix
(n

um
Sp

ec
, [

5]
));

 %

 m
08

A
_n

 =
 G

am
m

aS
*A

k*
G

am
m

aM
';

pa
r.A

 =
 A

_n
;

B
_n

 =
 G

am
m

aS
*S

';
pa

r.B
 =

 B
_n

;
pa

r.A
m

 =
 A

_m
as

s;

pa
r.A

q
=

A
_h

ea
t;

%
 W

rit
e

G
lo

ba
l V

ar
ia

bl
es

pa

r.T
re

f =
 0

.0
;

%
 In

iti
al

 C
on

di
tio

ns
:

xx
(1

:1
, 1

) =
 [0

.1
];

 %

 n
_s

ys
01

xx

(2
:5

, 1
) =

 [0
.5

;2
0.

0;
1.

0;
0.

0]
;

 %

 n
_s

ys
02

xx
(6

:7
, 1

) =
 [0

.0
;2

1.
0]

;

 %
 n

_s
ys

03

xx
(8

, 1
) =

 H
Fr

om
T(

xx
(1

:1
, 1

),
[5

.0
E+

5]
, [

1.
0E

+3
],

30
0,

 p
ar

.T
re

f)
;

 %

 H
_s

ys
01

xx

(9
, 1

) =
 H

Fr
om

T(
xx

(2
:5

, 1
),

[5
.0

E+
5;

 5
.0

E+
5;

 6
.0

E+
5;

 -5
.0

E+
6]

, [
1.

0E
+3

; 1
.0

E+
3;

 8
00

.0
; 1

20
0.

0]
, 3

00
, p

ar
.T

re
f)

;

%

 H
_s

ys
02

xx

(1
0,

 1
) =

 H
Fr

om
T(

xx
(6

:7
, 1

),
[-

5.
0E

+6
; 5

.0
E+

5]
, [

12
00

.0
; 1

.0
E+

3]
, 3

00
, p

ar
.T

re
f)

;

 %
 H

_s
ys

03

pa
r.t

sp
an

 =
 1

00
;

%
 C

al
l S

ol
ve

r
W

TB
A

R
 =

 w
ai

tb
ar

(0
, '

So
lv

in
g

D
A

Es
 ..

...
.')

;
op

tio
ns

 =
 o

de
se

t('
O

ut
pu

tF
cn

',
@

O
ut

pu
tB

ui
ld

, '
M

St
at

eD
ep

en
de

nc
e',

 'n
on

e',
 ..

.
 'A

bs
To

l',
 1

E-
10

, '
R

el
To

l',
 0

.0
01

);

[t1
, x

1]
 =

 o
de

15
s(

@
f,

[0
; p

ar
.ts

pa
n]

, x
x,

 o
pt

io
ns

);
cl

os
e(

W
TB

A
R

);

%
 B

ui
ld

 E
xt

ra
 O

ut
pu

t I
nf

or
m

at
io

n
sp

ec
ie

s =
 {

'Q
';

'A
';

'D
';

'B
';

'C
';

'E
'};

le

n_
t =

 o
ne

s(
le

ng
th

(m
od

_o
ut

.t)
,1

);
m

od
_o

ut
.sy

s0
1.

na
m

e
=

'C
oo

le
r';

m

od
_o

ut
.sy

s0
1.

id
 =

 '8
.1

';
m

od
_o

ut
.sy

s0
1.

sp
ec

ie
s =

 sp
ec

ie
s(

[1
])

;
m

od
_o

ut
.sy

s0
1.

V
 =

 le
n_

t*
0.

1'
;

m
od

_o
ut

.sy
s0

2.
na

m
e

=
'R

ea
ct

io
n

Ph
as

e';

m
od

_o
ut

.sy
s0

2.
id

 =
 '8

.2
';

m
od

_o
ut

.sy
s0

2.
sp

ec
ie

s =
 sp

ec
ie

s(
[2

, 3
, 4

, 5
])

;
m

od
_o

ut
.sy

s0
2.

V
 =

 le
n_

t*
1.

0'
;

m
od

_o
ut

.sy
s0

2.
re

ac
tio

n1
.fo

rm
ul

a
=

'2
A

 +
 3

B
 =

=>
 8

C
';

m
od

_i
nt

.sy
s0

2.
re

ac
tio

n1
.k

b
=

le
n_

t*
0.

08
';

m
od

_i
nt

.sy
s0

2.
re

ac
tio

n1
.k

f =
 le

n_
t*

0.
11

';
m

od
_o

ut
.sy

s0
3.

na
m

e
=

'E
xt

ra
ct

io
n

Ph
as

e';

m
od

_o
ut

.sy
s0

3.
id

 =
 '8

.3
';

m
od

_o
ut

.sy
s0

3.
sp

ec
ie

s =
 sp

ec
ie

s(
[5

, 6
])

;
m

od
_o

ut
.sy

s0
3.

V
 =

 le
n_

t*
1.

0'
;

m
od

_o
ut

.sy
s0

4.
na

m
e

=
'C

oo
la

nt
 S

ou
rc

e';

m
od

_o
ut

.sy
s0

4.
id

 =
 '1

';
m

od
_o

ut
.sy

s0
4.

sp
ec

ie
s =

 sp
ec

ie
s(

[1
])

;
m

od
_o

ut
.sy

s0
4.

c
=

le
n_

t*
[1

.0
]';

m

od
_o

ut
.sy

s0
4.

T
=

le
n_

t*
30

0.
0'

;
m

od
_o

ut
.sy

s0
6.

na
m

e
=

'F
ee

d
A

, D
';

m
od

_o
ut

.sy
s0

6.
id

 =
 '3

';
m

od
_o

ut
.sy

s0
6.

sp
ec

ie
s =

 sp
ec

ie
s(

[2
, 3

])
;

m
od

_o
ut

.sy
s0

6.
c

=
le

n_
t*

[0
.5

; 1
0.

0]
';

m
od

_o
ut

.sy
s0

6.
T

=
le

n_
t*

30
0.

0'
;

m
od

_o
ut

.sy
s0

7.
na

m
e

=
'F

ee
d

B
, D

';
m

od
_o

ut
.sy

s0
7.

id
 =

 '4
';

m
od

_o
ut

.sy
s0

7.
sp

ec
ie

s =
 sp

ec
ie

s(
[3

, 4
])

;
m

od
_o

ut
.sy

s0
7.

c
=

le
n_

t*
[1

0.
0;

 1
.0

]';

m
od

_o
ut

.sy
s0

7.
T

=
le

n_
t*

30
0.

0'
;

m
od

_o
ut

.sy
s0

8.
na

m
e

=
'F

ee
d

E'
;

m
od

_o
ut

.sy
s0

8.
id

 =
 '5

';
m

od
_o

ut
.sy

s0
8.

sp
ec

ie
s =

 sp
ec

ie
s(

[6
])

;
m

od
_o

ut
.sy

s0
8.

c
=

le
n_

t*
[2

1.
0]

';
m

od
_o

ut
.sy

s0
8.

T
=

le
n_

t*
30

0.
0'

;
m

od
_o

ut
.c

on
_m

01
.sp

ec
ie

s =
 sp

ec
ie

s(
[1

])
;

m
od

_o
ut

.c
on

_m
01

.c
 =

 le
n_

t*
[1

.0
]';

m

od
_o

ut
.c

on
_m

01
.V

ha
t =

 le
n_

t*
1.

0'
;

m
od

_o
ut

.c
on

_m
02

.sp
ec

ie
s =

 sp
ec

ie
s(

[1
])

;
m

od
_o

ut
.c

on
_m

02
.V

ha
t =

 le
n_

t*
1.

0'
;

m
od

_o
ut

.c
on

_m
03

.sp
ec

ie
s =

 sp
ec

ie
s(

[2
, 3

])
;

m
od

_o
ut

.c
on

_m
03

.c
 =

 le
n_

t*
[0

.5
; 1

0.
0]

';

m
od

_o
ut

.c
on

_m
03

.V
ha

t =
 le

n_
t*

0.
01

';
m

od
_o

ut
.c

on
_m

04
.sp

ec
ie

s =
 sp

ec
ie

s(
[3

, 4
])

;
m

od
_o

ut
.c

on
_m

04
.c

 =
 le

n_
t*

[1
0.

0;
 1

.0
]';

m

od
_o

ut
.c

on
_m

04
.V

ha
t =

 le
n_

t*
0.

01
';

m
od

_o
ut

.c
on

_m
05

.sp
ec

ie
s =

 sp
ec

ie
s(

[6
])

;
m

od
_o

ut
.c

on
_m

05
.c

 =
 le

n_
t*

[2
1.

0]
';

m
od

_o
ut

.c
on

_m
05

.V
ha

t =
 le

n_
t*

0.
01

';
m

od
_o

ut
.c

on
_m

06
.sp

ec
ie

s =
 sp

ec
ie

s(
[2

, 3
, 4

, 5
])

;
m

od
_o

ut
.c

on
_m

06
.V

ha
t =

 le
n_

t*
0.

01
';

m
od

_o
ut

.c
on

_m
07

.sp
ec

ie
s =

 sp
ec

ie
s(

[5
, 6

])
;

m
od

_o
ut

.c
on

_m
07

.V
ha

t =
 le

n_
t*

0.
01

';
m

od
_o

ut
.c

on
_m

08
.sp

ec
ie

s =
 sp

ec
ie

s(
[5

])
;

m
od

_o
ut

.c
on

_m
08

.k
 =

 le
n_

t*
0.

05
';

m
od

_o
ut

.c
on

_h
01

.U
 =

 le
n_

t*
1.

0E
+3

';
m

od
_o

ut
.c

on
_h

01
.A

 =
 le

n_
t*

1.
0'

;

%
 --

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

fu

nc
tio

n
st

at
us

 =
 O

ut
pu

tB
ui

ld
(t,

 x
x,

 fl
ag

);
%

 B
ui

ld
 O

ut
pu

t I
nf

or
m

at
io

n

gl
ob

al
 m

od
_o

ut
 m

od
_i

nt

st
at

us
 =

 0
;

if
na

rg
in

 <
 3

 |
is

em
pt

y(
fla

g)

i =
 le

ng
th

(m
od

_o
ut

.t)
 +

 1
;

m
od

_o
ut

.t(
i,

1)
 =

 t;

m
od

_o
ut

.sy
s0

1.
n(

i,:
) =

 x
x(

1:
1,

 1
);

m
od

_o
ut

.sy
s0

1.
H

(i,
:)

=
xx

(8
, 1

);
m

od
_o

ut
.sy

s0
1.

c(
i,:

) =
 m

od
_i

nt
.c

_s
ys

01
;

m
od

_o
ut

.sy
s0

1.
T(

i,:
) =

 m
od

_i
nt

.T
_s

ys
01

;
m

od
_o

ut
.sy

s0
1.

hs
(i,

:)
=

m
od

_i
nt

.h
s_

sy
s0

1;

m
od

_o
ut

.sy
s0

2.
n(

i,:
) =

 x
x(

2:
5,

 1
);

m
od

_o
ut

.sy
s0

2.
H

(i,
:)

=
xx

(9
, 1

);
m

od
_o

ut
.sy

s0
2.

c(
i,:

) =
 m

od
_i

nt
.c

_s
ys

02
;

m
od

_o
ut

.sy
s0

2.
T(

i,:
) =

 m
od

_i
nt

.T
_s

ys
02

;
m

od
_o

ut
.sy

s0
2.

hs
(i,

:)
=

m
od

_i
nt

.h
s_

sy
s0

2;

m
od

_o
ut

.sy
s0

2.
re

ac
tio

n1
.r(

i,:
) =

 m
od

_i
nt

.r(
1)

;
m

od
_o

ut
.sy

s0
3.

n(
i,:

) =
 x

x(
6:

7,
 1

);
m

od
_o

ut
.sy

s0
3.

H
(i,

:)
=

xx
(1

0,
 1

);
m

od
_o

ut
.sy

s0
3.

c(
i,:

) =
 m

od
_i

nt
.c

_s
ys

03
;

m
od

_o
ut

.sy
s0

3.
T(

i,:
) =

 m
od

_i
nt

.T
_s

ys
03

;
m

od
_o

ut
.sy

s0
3.

hs
(i,

:)
=

m
od

_i
nt

.h
s_

sy
s0

3;

m
od

_o
ut

.sy
s0

4.
hs

(i,
:)

=
m

od
_i

nt
.h

s_
sy

s0
4;

m

od
_o

ut
.sy

s0
6.

hs
(i,

:)
=

m
od

_i
nt

.h
s_

sy
s0

6;

m
od

_o
ut

.sy
s0

7.
hs

(i,
:)

=
m

od
_i

nt
.h

s_
sy

s0
7;

m

od
_o

ut
.sy

s0
8.

hs
(i,

:)
=

m
od

_i
nt

.h
s_

sy
s0

8;

m
od

_o
ut

.c
on

_m
01

.n
ha

t(i
,:)

 =
 m

od
_i

nt
.n

ha
t(1

:1
, 1

)';

m
od

_o
ut

.c
on

_m
01

.H
ha

t(i
,:)

 =
 m

od
_i

nt
.H

ha
t(1

);
m

od
_o

ut
.c

on
_m

02
.n

ha
t(i

,:)
 =

 m
od

_i
nt

.n
ha

t(2
:2

, 1
)';

m

od
_o

ut
.c

on
_m

02
.H

ha
t(i

,:)
 =

 m
od

_i
nt

.H
ha

t(2
);

m
od

_o
ut

.c
on

_m
03

.n
ha

t(i
,:)

 =
 m

od
_i

nt
.n

ha
t(3

:4
, 1

)';

m
od

_o
ut

.c
on

_m
03

.H
ha

t(i
,:)

 =
 m

od
_i

nt
.H

ha
t(3

);
m

od
_o

ut
.c

on
_m

04
.n

ha
t(i

,:)
 =

 m
od

_i
nt

.n
ha

t(5
:6

, 1
)';

m

od
_o

ut
.c

on
_m

04
.H

ha
t(i

,:)
 =

 m
od

_i
nt

.H
ha

t(4
);

m
od

_o
ut

.c
on

_m
05

.n
ha

t(i
,:)

 =
 m

od
_i

nt
.n

ha
t(7

:7
, 1

)';

m
od

_o
ut

.c
on

_m
05

.H
ha

t(i
,:)

 =
 m

od
_i

nt
.H

ha
t(5

);
m

od
_o

ut
.c

on
_m

06
.n

ha
t(i

,:)
 =

 m
od

_i
nt

.n
ha

t(8
:1

1,
 1

)';

m
od

_o
ut

.c
on

_m
06

.H
ha

t(i
,:)

 =
 m

od
_i

nt
.H

ha
t(6

);
m

od
_o

ut
.c

on
_m

07
.n

ha
t(i

,:)
 =

 m
od

_i
nt

.n
ha

t(1
2:

13
, 1

)';

m
od

_o
ut

.c
on

_m
07

.H
ha

t(i
,:)

 =
 m

od
_i

nt
.H

ha
t(7

);
m

od
_o

ut
.c

on
_m

08
.n

ha
t(i

,:)
 =

 m
od

_i
nt

.n
ha

t(1
4:

14
, 1

)';

m
od

_o
ut

.c
on

_m
08

.H
ha

t(i
,:)

 =
 m

od
_i

nt
.H

ha
t(8

);

m
od

_o
ut

.c
on

_h
01

.q
(i,

:)
=

m
od

_i
nt

.q
(1

);
el

se

sw
itc

h(
fla

g)

ca
se

 'i
ni

t'
m

od
_o

ut
.t

=
[]

;
O

ut
pu

tB
ui

ld
(t(

1)
, x

x,
 '')

;
ot

he
rw

is
e

en
d

en
d

%
 --

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

fu
nc

tio
n

dx
dt

 =
 f(

t,
xx

)
gl

ob
al

 W
TB

A
R

 m
od

_i
nt

 p
ar

;
w

ai
tb

ar
(t/

pa
r.t

sp
an

, W
TB

A
R

);
%

 In
iti

al
is

e
R

at
e

V
ar

ia
bl

es

m
od

_i
nt

.n
ha

t =
 z

er
os

(1
4,

 1
);

m
od

_i
nt

.H
ha

t =
 z

er
os

(8
, 1

);
m

od
_i

nt
.q

 =
 z

er
os

(1
, 1

);
m

od
_i

nt
.r

=
ze

ro
s(

1,
 1

);

%
 S

ys
te

m
 E

qu
at

io
ns

:
%

 S
ys

te
m

 1

(=
 8

.1
 C

oo
le

r)

m
od

_i
nt

.c
_s

ys
01

 =
 x

x(
1:

1,
 1

)/0
.1

;
m

od
_i

nt
.T

_s
ys

01
 =

 (x
x(

8,
 1

) -
 x

x(
1:

1,
 1

)'*
[5

.0
E+

5]
)/(

xx
(1

:1
, 1

)'*
[1

.0
E+

3]
) +

 p
ar

.T
re

f;
m

od
_i

nt
.h

s_
sy

s0
1

=
[5

.0
E+

5]
 +

 [1
.0

E+
3]

*(
m

od
_i

nt
.T

_s
ys

01
 -

pa
r.T

re
f)

;

%
 S

ys
te

m
 2

(=

 8
.2

 R
ea

ct
io

n
Ph

as
e)

m

od
_i

nt
.c

_s
ys

02
 =

 x
x(

2:
5,

 1
)/1

.0
;

m
od

_i
nt

.T
_s

ys
02

 =
 (x

x(
9,

 1
) -

 x
x(

2:
5,

 1
)'*

[5
.0

E+
5;

 5
.0

E+
5;

 6
.0

E+
5;

 -5
.0

E+
6]

)/(
xx

(2
:5

, 1
)'*

[1
.0

E+
3;

 1
.0

E+
3;

 8
00

.0
;

12
00

.0
])

 +
 p

ar
.T

re
f;

m
od

_i
nt

.h
s_

sy
s0

2
=

[5
.0

E+
5;

 5
.0

E+
5;

 6
.0

E+
5;

 -5
.0

E+
6]

 +
 [1

.0
E+

3;
 1

.0
E+

3;
 8

00
.0

; 1
20

0.
0]

*(
m

od
_i

nt
.T

_s
ys

02
 -

pa
r.T

re
f)

;

%
 S

ys
te

m
 3

(=

 8
.3

 E
xt

ra
ct

io
n

Ph
as

e)

m
od

_i
nt

.c
_s

ys
03

 =
 x

x(
6:

7,
 1

)/1
.0

;
m

od
_i

nt
.T

_s
ys

03
 =

 (x
x(

10
, 1

) -
 x

x(
6:

7,
 1

)'*
[-

5.
0E

+6
; 5

.0
E+

5]
)/(

xx
(6

:7
, 1

)'*
[1

20
0.

0;
 1

.0
E+

3]
) +

 p
ar

.T
re

f;
m

od
_i

nt
.h

s_
sy

s0
3

=
[-

5.
0E

+6
; 5

.0
E+

5]
 +

 [1
20

0.
0;

 1
.0

E+
3]

*(
m

od
_i

nt
.T

_s
ys

03
 -

pa
r.T

re
f);

%
 S

ys
te

m
 4

(=

 1
 C

oo
la

nt
 S

ou
rc

e)

m
od

_i
nt

.h
s_

sy
s0

4
=

[5
.0

E+
5]

 +
 [1

.0
E+

3]
*(

30
0.

0
- p

ar
.T

re
f)

;

%
 S

ys
te

m
 6

(=

 3
 F

ee
d

A
, D

)
m

od
_i

nt
.h

s_
sy

s0
6

=
[5

.0
E+

5;
 5

.0
E+

5]
 +

 [1
.0

E+
3;

 1
.0

E+
3]

*(
30

0.
0

- p
ar

.T
re

f)
;

%
 S

ys
te

m
 7

(=

 4
 F

ee
d

B
, D

)
m

od
_i

nt
.h

s_
sy

s0
7

=
[5

.0
E+

5;
 6

.0
E+

5]
 +

 [1
.0

E+
3;

 8
00

.0
]*

(3
00

.0
 -

pa
r.T

re
f)

;

%
 S

ys
te

m
 8

(=

 5
 F

ee
d

E)

m
od

_i
nt

.h
s_

sy
s0

8
=

[5
.0

E+
5]

 +
 [1

.0
E+

3]
*(

30
0.

0
- p

ar
.T

re
f)

;

%
 C

on
ne

ct
io

n
Eq

ua
tio

ns
:

%
 C

on
ne

ct
io

n
m

01

m
od

_i
nt

.n
ha

t(1
:1

, 1
) =

 [1
.0

]*
1.

0;

m
od

_i
nt

.H
ha

t(1
, 1

) =
 m

od
_i

nt
.h

s_
sy

s0
4'

*m
od

_i
nt

.n
ha

t(1
:1

, 1
);

%
 C

on
ne

ct
io

n
m

02

m
od

_i
nt

.n
ha

t(2
:2

, 1
) =

 m
od

_i
nt

.c
_s

ys
01

*1
.0

;
m

od
_i

nt
.H

ha
t(2

, 1
) =

 m
od

_i
nt

.h
s_

sy
s0

1'
*m

od
_i

nt
.n

ha
t(2

:2
, 1

);

%
 C

on
ne

ct
io

n
m

03

m
od

_i
nt

.n
ha

t(3
:4

, 1
) =

 [0
.5

; 1
0.

0]
*0

.0
1;

m

od
_i

nt
.H

ha
t(3

, 1
) =

 m
od

_i
nt

.h
s_

sy
s0

6'
*m

od
_i

nt
.n

ha
t(3

:4
, 1

);

%
 C

on
ne

ct
io

n
m

04

m
od

_i
nt

.n
ha

t(5
:6

, 1
) =

 [1
0.

0;
 1

.0
]*

0.
01

;
m

od
_i

nt
.H

ha
t(4

, 1
) =

 m
od

_i
nt

.h
s_

sy
s0

7'
*m

od
_i

nt
.n

ha
t(5

:6
, 1

);

%
 C

on
ne

ct
io

n
m

05

m
od

_i
nt

.n
ha

t(7
:7

, 1
) =

 [2
1.

0]
*0

.0
1;

m

od
_i

nt
.H

ha
t(5

, 1
) =

 m
od

_i
nt

.h
s_

sy
s0

8'
*m

od
_i

nt
.n

ha
t(7

:7
, 1

);

%
 C

on
ne

ct
io

n
m

06

m
od

_i
nt

.n
ha

t(8
:1

1,
 1

) =
 m

od
_i

nt
.c

_s
ys

02
*0

.0
1;

m

od
_i

nt
.H

ha
t(6

, 1
) =

 m
od

_i
nt

.h
s_

sy
s0

2'
*m

od
_i

nt
.n

ha
t(8

:1
1,

 1
);

%
 C

on
ne

ct
io

n
m

07

m
od

_i
nt

.n
ha

t(1
2:

13
, 1

) =
 m

od
_i

nt
.c

_s
ys

03
*0

.0
1;

m

od
_i

nt
.H

ha
t(7

, 1
) =

 m
od

_i
nt

.h
s_

sy
s0

3'
*m

od
_i

nt
.n

ha
t(1

2:
13

, 1
);

%
 C

on
ne

ct
io

n
m

08

m
od

_i
nt

.n
ha

t(1
4:

14
, 1

) =
 0

.0
5*

(p
ar

.m
08

_P
er

m
O

r*
m

od
_i

nt
.c

_s
ys

02
 -

pa
r.m

08
_P

er
m

Ta
r*

m
od

_i
nt

.c
_s

ys
03

);
m

od
_i

nt
.H

ha
t(8

, 1
) =

 ((
di

ag
(1

+s
ig

n(
m

od
_i

nt
.n

ha
t(1

4:
14

, 1
))

)*
pa

r.m
08

_P
er

m
O

r*
m

od
_i

nt
.h

s_
sy

s0
2

+
di

ag
(1

-
si

gn
(m

od
_i

nt
.n

ha
t(1

4:
14

, 1
))

)*
pa

r.m
08

_P
er

m
Ta

r*
m

od
_i

nt
.h

s_
sy

s0
3)

/2
)'*

m
od

_i
nt

.n
ha

t(1
4:

14
, 1

);

%
 C

on
ne

ct
io

n
h0

1

m
od

_i
nt

.q
(1

, 1
) =

 1
.0

E+
3*

1.
0*

(m
od

_i
nt

.T
_s

ys
01

 -
m

od
_i

nt
.T

_s
ys

02
);

%
 R

ea
ct

io
n

Eq
ua

tio
ns

%

 R
ea

ct
io

n
1

2A
 +

 3
B

 =
=>

 8
C

(S

ys
te

m
 2

(=

 8
.2

 R
ea

ct
io

n
Ph

as
e)

)
m

od
_i

nt
.r(

1)
 =

 0
.1

1*
m

od
_i

nt
.c

_s
ys

02
(1

)^
2*

m
od

_i
nt

.c
_s

ys
02

(3
)^

3
- 0

.0
8*

m
od

_i
nt

.c
_s

ys
02

(4
)^

8;

 %

 D
yn

am
ic

 B
al

an
ce

 E
qu

at
io

ns

 d

xd
t(1

:7
) =

 p
ar

.A
*m

od
_i

nt
.n

ha
t +

 p
ar

.B
*m

od
_i

nt
.r;

 d
xd

t(8
:1

0)
 =

 p
ar

.A
m

*m
od

_i
nt

.H
ha

t +
 p

ar
.A

q*
m

od
_i

nt
.q

;
dx

dt
 =

 d
xd

t';

%
 --

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

fu

nc
tio

n
M

 =
 m

as
s(

t)
gl

ob
al

 p
ar

M

 =
 p

ar
.M

as
sM

at
rix

;

%
 --

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

fu

nc
tio

n
A

 =
 S

tre
am

M
at

rix
(n

um
, c

on
)

%
 B

ui
ld

s t
he

 st
re

am
 m

at
rix

 fo
r l

um
pe

d
sy

st
em

s a
nd

 st
ea

dy
 st

at
e

sy
st

em
s.

%
 T

he
 sy

st
em

s h
av

e
to

 b
e

or
de

re
d.

 F
irs

t l
um

ps
, t

he
n

st
ea

dy
 st

at
e,

 s
ou

rc
e

%
 a

nd
 si

nk
 sy

st
em

s s
uc

ce
ss

iv
el

y.

%
 n

um
 is

 th
e

nu
m

be
r o

f l
um

pe
d

sy
st

em
s p

lu
s t

he
 n

um
be

r o
f s

te
ad

y
st

at
e

sy
st

em
s.

%
 c

on
 is

 a
 (n

um
C

on
 x

 2
) m

at
rix

. F
irs

t c
ol

um
n

ar
e

th
e

or
ig

in
 sy

st
em

s o
f

%
 a

ll
th

e
de

fin
ed

 c
on

ne
ct

io
ns

. S
ec

on
d

co
lu

m
n

re
fe

rs
 to

 th
e

ta
rg

et
 sy

st
em

s.

if
si

ze
(c

on
,1

) >
 0

A
 =

 sp
ar

se
(n

um
, s

iz
e(

co
n,

1)
);

fo

r i
=1

:s
iz

e(
co

n,
1)

fo

r j
=1

:2

%
 1

 =
 o

rig
in

, 2
 =

 ta
rg

et

if

co
n(

i,
j)

<=
 n

um

A
(c

on
(i,

j),
 i)

 =
 (-

1)
^j

;

en
d

en
d

en

d
el

se

A

 =
 0

;
en

d

%
 --

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

%

 S
el

ec
tio

nM
at

rix

%

P
=

Se
le

ct
io

nM
at

rix
(n

um
Sp

ec
, s

pe
cs

) R
et

ur
ns

 th
e

'S
el

ec
tio

n
M

at
rix

' P
 o

f t
he

%

ve

ct
or

 sp
ec

s (
di

m
en

si
on

 M
).

P
is

 a
 (s

pa
rs

e)
 id

en
tit

y
m

at
rix

 in
 w

hi
ch

 e
ac

h

%

ro
w

 i,
 fo

r w
hi

ch
 i

is
 n

ot
 a

n
el

em
en

t o
f s

pe
cs

, i
s e

lim
in

at
ed

.
%

So

, i
f s

pe
cs

 c
on

ta
in

s M
 sp

ec
ie

s,
 th

en
 th

e
di

m
en

si
on

 o
p

P
w

ill
 b

e
M

-b
y-

nu
m

Sp
ec

.

fu
nc

tio
n

P
=

Se
le

ct
io

nM
at

rix
(n

um
Sp

ec
, s

pe
cs

)

if
si

ze
(s

pe
cs

, 1
)=

=1
 &

 le
ng

th
(n

um
Sp

ec
)=

=1
,

P

=
sp

ar
se

(s
iz

e(
sp

ec
s,2

),
nu

m
Sp

ec
);

sp

ec
s =

 so
rt(

sp
ec

s)
; %

 T
he

 sp
ec

ie
s m

us
t b

e
so

rte
d

fr
om

 lo
w

 to
 h

ig
h

fo

r i
=1

:s
iz

e(
sp

ec
s,2

),

P(

i,s
pe

cs
(1

,i)
) =

 1
;

en

d
el

se
if

is
em

pt
y(

sp
ec

s)
;

 P

 =
 sp

ar
se

(0
, n

um
Sp

ec
);

el
se

er
ro

r(
'In

pu
t m

us
t b

e
a

ro
w

 v
ec

to
r')

;
en

d

%
 --

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

fu

nc
tio

n
H

 =
 H

Fr
om

T(
n,

 h
0,

 c
p,

 T
, T

re
f);

H
 =

 n
'*

(h
0

+
cp

*(
T

- T
re

f)
);

212 Example of Modeller Output Files

Samenvatting

Het belangrijkste doel van dit onderzoek was het ontwikkelen van een systema-
tische modelleermethode voor het ontwerpen van op fysisch inzicht gebaseerde,
dynamische modellen van macroscopische fysisch, chemisch en/of biologische
processen. Het modelleren van dergelijke processen is een van de belangrijk-
ste taken van een process engineer. Deze modellen worden namelijk op grote
schaal gebruikt voor allerlei ingenieurs activiteiten, zoals procesregeling, opti-
malisatie, simulatie, procesontwerp en fundamenteel onderzoek. Het opstellen
van deze modellen wordt, over het algemeen, als een moeilijke en zeer tijd-
rovende zaak gezien en wordt het liefst aan �experts� overgelaten. Dit hoeft
niet zo te zijn als een duidelijke, stapsgewijze methode wordt aangehouden.

De modelleermethode is gebaseerd op het hiërarchisch opdelen van een pro-
ces in thermodynamische systemen en bestaat uit vijf stappen: (i) Deel het
proces op in kleinere delen, die elk afzonderlijk goed (wiskundig) te beschrijven
zijn. In deze stap wordt de zogeheten Physical Topology geconstrueerd, gebruik
makend van slechts twee bouwstenen, namelijk Systemen, die capaciteiten
voorstellen die de fundamenteel extensieve grootheden (zoals componenten
massa, energie en impuls) kunnen opslaan, en Connecties, die de overdracht
van de fundamenteel extensieve grootheden tussen deze systemen beschrijven.
(ii) Construeer de Species Topology. De Species Topology beschrijft de dis-
tributie van chemische en biologische componenten, alsook hun transformaties
in andere componenten in de verschillende delen van het proces in de physical
topology. (iii) Schrijf voor elke relevante extensieve grootheid (zoals bijvoor-
beeld componenten massa of energie) van elk systeem de corresponderende
balansvergelijkingen. (iv) Voeg deÞnities en toestandsvergelijkingen aan de
modelvergelijkingen toe en kies de overdrachts- en reactievergelijkingen die
het transport en de reacties beschrijven. DeÞnieer ook eventuele beperkende
aannames, welke eventueel tot hoge-index DAE�s (Differential Algebraic Equa-
tions) kunnen leiden. De ontstane wiskundige problemen kunnen altijd door
model reductie direct worden opgelost. (v) Voeg het dynamisch gedrag van
informatie verwerkende units, zoals regelaars, toe.

Deze vijf stappen hoeven niet per sé in deze exacte volgorde te worden

213

214 Example of Modeller Output Files

afgewerkt - althans niet voor het complete model. Het wordt aan de model
ontwerper overgelaten wanneer details aan speciÞeke delen van het proces
worden toegevoegd.

Met behulp van de vijf stappen kan gemakkelijk een consistent wiskundig
model van het onderzochte proces worden gegenereerd. Dit model kan direct
gebruikt worden voor bijvoorbeeld simulaties of dynamisch ontwerp of het
model kan eerst worden vereenvoudigd door bijvoorbeeld linearizatie of model
reductie toe te passen.

Een ander belangrijk doel van het onderzoek is het implementeren van
deze modelleermethode in een nieuw computerprogramma, �The Modeller�.
Dit programma is ontworpen met het doel modelontwerpers te assisteren bij
het maken van consistente procesmodellen en de tijdsduur die hiervoor nodig
is (ruim) te verkorten. Met dit programma kunnen op twee basis manieren
proces modellen worden opgebouwd, namelijk door reeds gedeÞnieerde syste-
men te verÞjnen (de top-down methode) of door systemen te groeperen (de
bottom-up methode). De verschillende methoden kunnen door elkaar gebruikt
worden en alle acties die worden uitgevoerd kunnen ongedaan gemaakt worden
(multiple undo/redo mechanisme). Modellen (of delen daarvan) kunnen op elk
moment van de model deÞnitie worden opgeslagen, geladen, gëõmporteerd of
geëxporteerd. Op deze manier is er een veilig mechanisme voor hergebruik
van modellen.

Het computerprogramma is gëõmplementeerd met BlackBox Component
Builder 1.4 (Component Pascal). Dit is een met Java te vergelijken component
georiënteerde programmeertaal.

Curriculum Vitae

11 April 1973 Born in Oostburg.

1985 - 1991 Secondary School, Scholengemeenschap �t Zwin, Oost-
burg.

1991 - 1997 Master student at the Eindhoven University of Tech-
nology, Department of Chemical Technology, System
and Control Group. Main Subject: Modelling.

1997 - 2002 PhD research project, as doctoral student (AiO-4)
with the �Systems and Control Group� of the depart-
ment of Chemical Technology, University of Technol-
ogy Eindhoven.

2002 - 2003 3 month research project for FORD Automotive, con-
structing a dynamic simulation model of a catalytic
converter for diesel engines, Aachen, Germany.

Hobbies Collecting and playing musical instruments, board
games, squash, pool billiard, computer programming,
reading, spending time with wife and kids.

215

Index

Assumptions, 77
leading to high-index models,

79
steady-state, 89
summery of, 99
time scale, 27

Connection
deÞnition, 23
directionality, 42, 134
equations, 62
information connection, 75
loose connections, 123
open connections, 125
permeability, 40, 134
variables, 45

Control, 74

Discontinuities, 94

Equation
Algebraic equations, 59
energy balances, 55
enthalpy balance, 57
fundamental balance equation,

47
mass balances, 48

Equation topology, 43
construction, 143

Events, 94
Examples, 161

Flow
unmodelled, 81

Implementation details, 107

Index
deÞnition, 78
Full Index Reduction, 84
high-index models, 78
reduction algorithms, 80
Simple Index Reduction, 81

Linear models, 65
state space description, 67

Linearisation, 65
Linearised models

state space description, 71

Physical topology, 21
basic tree operations, 114
building blocks, 21
construction, 111
domains, 26
fundamental time scale assump-

tions, 27
graphical representation, 112
hierarchical organisation, 33

Reaction, 42
equations, 63
injecting, 132
matrix notation, 49
plant reactions, 131
unmodelled, 81
variables, 46

Repetitive structures, 127

Species
injecting, 132
plant species, 131

216

Index 217

propagation, 135
Species topology, 39

chemical distribution, 39
construction, 131

System
composite, 33
deÞnition, 22
equations, 59
information system, 75
sub-classes, 32
unique identiÞers, 113
variables, 44

Variable
classiÞcation, 44
fundamental, 47
of composit systems, 98
substitution, 73

